

1303 South 8th Street P.O. Box 1090 Manitowoc, WI 54221-1090 920-683-4600 FAX 920-686-4348 www.mpu.org

Mr. James G. Crawford, P.E. Wisconsin Department of Natural Resources Northeast Region Air Program 2984 Shawano Ave. Green Bay, WI 54313-6727 October 31, 2011

RE: Boiler B09 Stack Test Report

Dear Mr. Crawford:

Enclosed are two copies of the stack test report required by Permit No.: 436035930-P20 conditions I.D.13.b.(1) and I.D.14.b.(3). The report details the ammonia and sulfuric acid mist Compliance Tests performed on Manitowoc Public Utilities Boiler No. 9 (B09) September 28-29, 2011 in Manitowoc, WI. Mostardi Platt performed the compliance tests and the results are documented in Report No. M113908 and summarized as follows:

Boiler	Constituent	Average Emission Rate ppm	Permit Limit ppm
B-09	Ammonia	2.64	25

Boiler	Constituent	Average Emission Rate Lb/hour	Permit Limit Lb/hour
B-09	Ammonia	1.01	15.8

Boiler	Constituent	Average Emission Rate Lb/mmBtu	Permit Limit Lb/mmBtu
B-09	Sulfuric Acid Mist	0.0020 (Heat Input)	0.0045
B-09	Sulfuric Acid Mist	0.0022 (F-factor)	0.0045

B09 Compliance Status:

- Ammonia test results were in compliance with the applicable permit limitations of Permit 436035930-P20 conditions I.D.13.a. (1) (a) and I.D.13.a. (1) (b).
- Sulfuric acid mist test results were in compliance with the applicable permit limitation of Permit 436035930-P20 conditions I.D.14.a.(1).

If you have any questions regarding the stack test report, or require additional information, please contact me.

Sincerely,

Thomas E. Reed, P.E.

Environmental Engineer

Manitowoc Public Utilities Phone: 920-686-4384

Cell: 920-973-7134 Fax: 920-686-4348 Cc:

Red Jones - MPU

Jerry Ahlswede – MPU

Mark Boeckman - MPU

Tim Harding - MPU

Steve Bacalzo - MPU

Source: Y:\Group File Folders\Reed\1-Tom Reed\Air\stack testing\2011 B9 test\Stack test report cover letter to WDNR.doc

Emission Compliance Test Report

Manitowoc Public Utilities
Manitowoc Generating Station
Boiler B09 Outlet Duct
Manitowoc, Wisconsin
September 28 and 29, 2011

Operating Permit Facility ID: 436035930 Operating Permit #: 436035930-P20

> Report Submittal Date October 27, 2011

> > Prepared By

Mostardi Platt

Report No. M113908

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 EXECUTIVE SUMMARY	
3.0 TEST METHODOLOGY Method 1 Traverse Point Determination Method 2 Volumetric Flowrate Determination Method 3A Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination Conditional Test Method 027 (CTM-027) Ammonia (NH ₃) Determination Sulfuric Acid Mist (SO ₃ as H ₂ SO ₄) Determination	6 7 7
4.0 TEST RESULT SUMMARY	9
5.0 PROCESS DATA	11
6.0 CONCLUSION AND CERTIFICATION	11
APPENDIX Plant Operating Data Test Section Diagrams Sample Train Diagrams Calculation Nomenclature and Formulas Sample Analysis Data Coal Laboratory Analysis Reference Method Test Data (Computerized Sheets) Calibration Data	
Field Data Sheets	73

1.0 Introduction

MOSTARDI PLATT conducted an emissions compliance test program for Manitowoc Public Utilities in Manitowoc, Wisconsin on September 28 and 29, 2011 on the Boiler B09 Outlet Duct. This report summarizes the results of the test program and test methods used.

The test location, test dates, and test parameters are summarized below in Table 1.

Table 1
Test Overview

Test Location	Test Date	Test Parameters		
Boiler B09 Outlet Duct	September 28, 2011	Ammonia (NH₃)		
Boiler B09 Outlet Duct	September 29, 2011	Sulfuric Acid Mist (SO ₃)		

B09 Process Summary

Manitowoc Public Utilities Unit #9 is an atmospheric pressure circulating fluidized bed (CFB) boiler that fires coal, petroleum coke, paper pellets or a combination of any of the three fuels, along with natural gas as a start-up fuel. The boiler produces steam, which is used to turn a steam turbine/electric generator set and to provide steam for off-site utilization (cogeneration). The Manitowoc Public Utilities Power Plant is located at 701 Columbus Street in the City of Manitowoc, in Manitowoc County, Wisconsin. The WDNR FID No.: is 436035930. The Manitowoc Public Utilities business office is located on the same site with an address of 1303 South 8th Street. The simplified process flow diagram of the CFB unit is shown in Figure 1.

DISCHARGE INLET CIRCULATING COOLING WATER FROM LAKE MICHIGAN ELECTRICITY TO GRID SELECTIVE NON CATALYTIC REDUCTION (SNCR) SYSTEM CONDENSER AQUEOUS AMMONIA STORAGE ELECTRIC GENERATOR STEAM TURBINE SUBSTATION TO MPU STEAM CUSTOMERS COAL OR PET. COKE SO2 CONTROĿ FABRIC FILTER LIMESTONE **BAGHOUSE** FUEL / LIMESTONE PREPARATION AIR 🏷 FLY ASH INDUCED DRAFT FAN STACK STORAGE BED ASH STORAGE CIRCULATING F FLUIDIZED BED (CFB) BOILER LIMESTONE (RAIL OR TRUCK DELIVERY) ASH TO LANDFILL AND / OR BENEFICIAL USE **CEMS** Shelter

FIGURE 1. Process flow diagram of the Unit 9 steam/electric cogeneration unit.

Unit 9 is connected to a single 63 MW generator. The exhaust from unit 9 is continuously monitored prior to combining with the exhaust from diesel unit 2 and discharging out Stack S10, see Figure 2. Opacity monitoring using a certified COM is performed at an elevated monitoring location on stack S10 for Unit 9 and the diesel.

Unit 9 Unit 9 CEMS Diesels

Atmospheric Pressure Circulating Fluidized Bed Boiler Description - (Boiler 09)

The Atmospheric Pressure Circulating Fluidized Bed boiler (CFB) boiler provides the steam necessary to power the steam turbine and electric generator. The CFB boiler technology is significantly different from conventional utility power boilers utilizing pulverized coal, stoker, or cyclone boiler technology, since it has the ability to significantly reduce emissions of sulfur dioxide (SO_2) and nitrogen oxides (NO_X), two pollutants of concern in acid deposition and, in the case of NO_X emissions, ground level ozone formation. The mechanism responsible for reducing SO_2 and NO_X emissions is the use of limestone as part of the fluidized bed "matrix" and the relatively low combustion temperatures, respectively. CFB boiler technology is considered a "Clean Coal Technology" by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

The CFB boiler will combust coal and /or petroleum coke (and, during startup, natural gas) in a limestone matrix. In the furnace section of the CFB boiler a mixture of fuel, limestone, and ash is suspended or "fluidized" in an upwardly flowing gas stream. Although the fuel particles and limestone are solids, the combination of fuel particles, limestone and combustion air exhibit fluid-like properties. Combustion air forced in at the bottom of the furnace keeps the bed in a constantly upward moving flow. At the top of the furnace, relatively large entrained particles are separated from smaller ash particles and the combustion gases and returned to the furnace until combustion is complete. Because of the circulating nature of the fluidized bed, this combustion technology is referred to as a *circulating* fluidized-bed (CFB) boiler.

Combustion takes place within the furnace "bed" with high furnace heat transfer rates but low combustion temperatures ranging from 1,500 to 1,650°F. Because thermal NO_X formation is a high temperature process occurring at temperatures in excess of 2,000°F, the lower CFB boiler operating temperature significantly reduces NO_X production. The addition of limestone and hydrated ash to the fluidized bed allows the boiler to remove fuel sulfur directly in the boiler. The boiler is equipped with an ammonia injection SNCR system in addition to good combustion practices to control the nitrogen oxide emissions. Combustion control is better than expected and operation of the SNCR system is not necessary at all times in order to comply with the

applicable nitrogen oxide emission limitations. The installation of CEMS equipment is required for demonstrating compliance with sulfur dioxide, nitrogen oxides, and opacity emission limitations. Quarterly excess emission reports are filed with the WDNR from the certified instruments demonstrating compliance with the applicable emission limitations. The CEMS is part of the B09 Part 75 system and emission reports are filed quarterly with EPA for the ARP and CAIR.

Air Pollution Control Operation Permit 436035930-P20 permit limitations for Unit 9 are summarized in the following table:

UNIT 9 Permit Limitations								
Pollutant	Regulation	Standard	Units	Ave. Period				
Particulate Matter	NR 415.06(2)(c), Wis. Adm. Code	0.03	lb/mmBtu	n/a				
Particulate Matter (PM10)	§ 285.65(3), Wis. Stats.	0.03	lb/mmBtu	n/a				
Sulfur Dioxide	NR 440.20(4), Wis. Adm. Code § 285.65(7) and (3) Wis. Stats.	0.30 71.2	Ib/mmBtu tons per month	30 days 12 months				
Nitrogen Oxides	NR 440.20, Wis. Adm. Code § 285.65(7) and (3) Wis. Stats.	0.155 24.62	Ib/mmBtu tons per month	30 days 12 month				
Carbon Monoxide	NR 405.08(20)	0.15	lb/mmBtu	24 hours				
Volatile Organic Compounds	NR 419.03, Wis Adm. Code	0.013	lb/mmBtu	n/a				
Lead	§ 285.65(7) Wis. Stats.	2.0 x10 ⁻⁴	lb/mmBtu	n/a				
Mercury	§ 285.65(7) Wis. Stats.	3.52 x10 ⁻	lb/mmBtu	n/a				
Fluoride	§ 285.65(7) Wis. Stats.	0.0017	lb/mmBtu	n/a				
Visible Emissions	NR 431.05, Wis. Adm. Code	20%		6 min ave.				
Benzene	§ 285.65(7) Wis. Stats.	0.0325	Lb/hour	n/a				
Polychlorinated Dibenzo-p-Dioxins	NR 445.04(3)(b), Wis Adm. Code	BACT		n/a				
Ammonia	NR 445.04(1), Wis Adm. Code	25	ppm	n/a				
	NR 445.04(1), Wis Adm. Code	15.8	Lb/hour	n/a				
Sulfuric Acid Mist	§ 285.65(7) Wis. Stats.	0.0045	lb/mmBtu	24 hours				
Formaldehyde	§ 285.65(3) Wis. Stats.	0.0060	Lb/hr	n/a				

The identification of individuals associated with the test program is summarized below in Table 2.

Table 2

Test Personnel

Location	Address	Contact
Test Facility	Manitowoc Public Utilities	Mr. Thomas E. Reed
	MPU Power Plant	(920) 686-4384 (phone)
	701 Columbus Street	tomreed@mpu.org
	Manitowoc, Wisconsin	mailto: chris.mahin@knaufusa.com
Testing Company	Mostardi Platt	Mr. A. Lawrence Sorce
Representative	888 Industrial Drive	(630) 993-2100 (phone)
	Elmhurst, Illinois 60126	lsorce@mp-mail.com

The test crew consisted of Messrs. R. Sollars and A. L. Sorce of Mostardi Platt. The purpose of the test program was to determine the emission rates of NH_3 and SO_3 at the Boiler B09 Outlet Duct.

2.0 Executive Summary

Selected results of the test program are summarized below, in Table 3. A complete summary of emission test results follows the narrative portion of this report.

Table 3
Test Results

Test Location	Date	Test Parameter	Emission Rate	Emission Limit
	9/28/11	NH ₃	2.64 ppm	25 ppm
	9/28/11	NH ₃	1.01 lbs/hr	15.8 lbs/hr
Boiler B09 Outlet	9/29/11	SO ₃	0.0020 Lbs/MMBtu (Heat Input)	0.0045 Lbs/MMBtu (Heat Input)
Duct	9/29/11	SO ₃	0.0022 Lbs/MMBtu (F-factor)	0.0045 Lbs/MMBtu (F-factor)
	9/29/11 SO ₃		1.41 Lbs/hr	N/A
	9/29/11	SO ₃	0.06 Lbs/ton of fuel input	N/A

A cyclonic flow test indicating that the unit meets the less than 20 degree angle requirement was conducted on September 27, 2011 and is included in the Appendix. The average angle was 8.88 degrees.

3.0 Test Methodology

Emissions testing was conducted following the methods specified in 40 CFR, Part 60, Appendix A. Schematics of the sampling trains used are included in the Appendix. Copies of field data sheets and/or analyzer print-outs for each test run are included in the Appendix.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location is summarized below, in Table 3.

Table 3
Sample Point Selection

Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points
	> 0.5	> 2.0	NH ₃	24
Boiler B09 Outlet Duct	> 0.5	> 2.0	SO ₃	1
Duct	> 0.5	> 2.0	Volumetric Flow	24

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the Appendix.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. A Servomex analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method.

Conditional Test Method 027 (CTM-027) Ammonia (NH₃) Determination

Ammonia concentrations were determined using CTM-027 at the test location. An integrated 24-point sample was extracted from the gas stream and passed through dilute (0.1 N) sulfuric acid. In the dilute acid, ammonia dissolves and forms ammonia ions. The ammonia ions were then analyzed by ion chromatography. The sample train consisted of a glass-lined probe followed by a heated filter, and four impingers. The first and second impingers contained the dilute sulfuric acid, the third impinger was empty, and the fourth impinger contained silica gel to absorb any remaining moisture. The train was leak checked prior to and after each run. The samples were recovered by quantitatively transferring the contents of the first three impingers and deionized water rinses to a glass sample jar. The samples were mixed and labeled, and the level marked for transfer to the laboratory. The samples were analyzed by TEI Analytical, Inc. of Niles, Illinois.

Sulfuric Acid Mist (SO₃ as H₂SO₄) Determination

Stack gas sulfuric acid mist (H₂SO₄ and SO₃) concentrations and emission rates were determined in accordance with Consol Method 8A (Controlled Condensate Method). An ESC sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted by Mostardi Platt. All of the equipment used was

calibrated in accordance with the specifications of the Method. Calibration data is presented in the Appendix.

Quality assurance and quality control was demonstrated by spiking run 1 with a known amount of H_2SO_4 and verifying the recovery by re-titrating the sample. The recovery was found to be 93.75%.

4.0 Test Result Summary

Client: Manitowoc Public Utilities
Facility: Manitowoc Generating Station

Test Location: Boiler B09 Outlet Duct

Test Method: CTM-027

Source Condition Date Start Time End Time	60.2 MW 9/28/11 11:30 12:40 Run 1	59.2 MW 9/28/11 13:45 15:00 Run 2	60.0 MW 9/28/11 15:30 16:35 Run 3	Average
Stack (Conditions			
Average Gas Temperature, °F	341.3	341.3	342.3	341.6
Flue Gas Moisture, percent by volume	6.6%	7.0%	6.9%	6.8%
Average Flue Pressure, in. Hg	29.10	29.10	29.10	29.10
Gas Sample Volume, dscf	64.674	66.742	65.382	65.599
Average Gas Velocity, ft/sec	60.198	60.004	59.723	59.975
Gas Volumetric Flow Rate, acfm	229,778	229,037	227,963	228,926
Gas Volumetric Flow Rate, dscfm	137,574	136,536	135,823	136,644
Average %CO ₂ by volume, dry basis	14.0	13.8	14.1	14.0
Average %O ₂ by volume, dry basis	5.3	5.5	5.2	5.3
Isokinetic Variance	98.3	102.2	100.7	100.4
Ammonia (I	NH4) Emissi	ons		
mg of sample collected	4.76	3.66	2.60	3.67
ppm	3.47	2.58	1.87	2.64
lb/hr	1.34	0.99	0.71	1.01

Consol Controlled Condensate Titration Results Summary Manitowoc Public Utilities Boiler B09 Outlet Duct September 29, 2011

	Gaseous Phase SO ₃ as H ₂ SO ₄ , 80% IPA Condenser Coil												
													lbs/mmBtu SO ₃
												lbs/mmBtu SO ₃	as H ₂ SO ₄
							CSO3 as H2SO4	Volumetric	ppm SO ₃ as	lbs/hr SO ₃ as	lbs/ton SO ₃ as	as H ₂ SO ₄	(Heat Input
Test No.	Time	Vt-Vtb	N	Vsoln	Va	Vm(std) ft ³	(lbs/dscf)	Flow DSCFM	H_2SO_4	H_2SO_4	H_2SO_4	(F-factor Basis)	Basis)
1	08:40 - 09:40	0.30	0.0107	100	25	7.067	1.96E-07	129,064	0.77	1.52	0.06	0.0023	0.0022
2	10:40 - 11:40	0.25	0.0107	100	25	5.918	1.95E-07	129,332	0.77	1.52	0.06	0.0023	0.0021
3	12:25 - 13:25	0.20	0.0107	100	25	5.958	1.55E-07	129,482	0.61	1.21	0.05	0.0018	0.0017
1							Average	129,293	0.72	1.41	0.06	0.0022	0.0020

QA/QC Recovery

1 ml 0.01 N H2SO4 added to Test 1.

Titrated with 0.0102 Barium Chloride 1.2 ml titrated for QA/QC Recovery

(1 ml x 0.01 N)/ 0/0102 N equals 0.98 mls. 0.98 mls plus 0.3 mls sampled Test 1 equals 1.28 mls.

1.2 mls divided by 1.28 mls times 100 equals 93.75% Recovery

Emission Compliance Test Report Manitowoc Public Utilities–Manitowoc Boiler B09 Outlet Duct Project No.: M113908 September 28 and 29, 2011

5.0 Process Data

Production data and fuel use data was recorded by plant personnel during each test run in order to correlate emission rates to production and fuel use. Production data and fuel use data is found in the Appendix.

6.0 Conclusion and Certification

MOSTARDI PLATT is pleased to have been of service to Manitowoc Public Utilities. If you have any questions regarding this test report, please do not hesitate to contact us at 630-521-9400.

CERTIFICATION

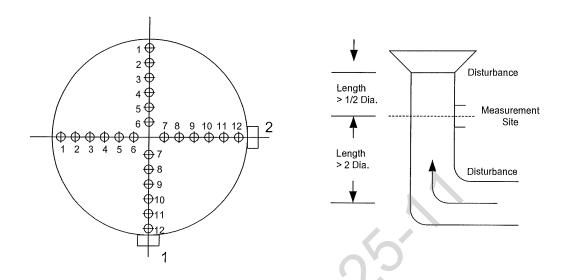
As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

A.L. Sorce	Project Manager
Jeffry M. Cinhue	
	Quality Assurance
Jeffrey M. Crivlare	

Date: September 28, 2011 Boiler: B Test: Ammonia Run: No. Methods: USEPA Methods 1, 2, and Parameter Star Time 12:34 Coal Scale (A.) 31850 Coal Scale (B.) 38902 Coal Scale (C.) 47783 Total Pounds of Fuel 47783 Pounds of fuel per hour 10.7 Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 512298 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.4 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	3A, 40CFR60, t Mid 4 01 15 8 11.2 113 7 6 60.10 467 449 0 1463.	by: Platt Environ Appendix A and 33706 390861 66059 2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	Avg. Avg. Avg. 11.2 11.2 135 9 59.99 466 452 8 1461.9 48.1	
Parameter Star Time 12:34 Coal Scale (A.) 31850 Coal Scale (B.) 38902 Coal Scale (C.) 4778 Total Pounds of Fuel 4778 Pounds of fuel per hour 10.7 Limestone (Klbs/hr) 512298 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.9 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	3A, 40CFR60, t Mid 4 01 15 8 11.2 113 7 6 60.10 467 449 0 1463.	Appendix A and 13:43 33706 390861 66059 2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	Avg. Avg. Avg. 11.2 11.2 135 9 59.99 466 452 8 1461.9 48.1	Net 1:0 18,56 18,40 18,27 55,23 48,03
Time 12:34 Coal Scale (A.) 31850 Coal Scale (B.) 38902 Coal Scale (C.) 4778 Total Pounds of Fuel 4778 Pounds of fuel per hour 10.7 Limestone (Klbs/hr) 512298 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.4 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	11.2 113 7 6 60.10 467 449 0 1463.	13:43 33706 390861 66059 2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	11.2 11.2 135 9 59.99 466 452 8 1461.9 48.1	1:0 18,56 18,40 18,27 55,23 48,03
Coal Scale (A.) 31850 Coal Scale (B.) 38902 Coal Scale (C.) 47783 Total Pounds of Fuel Pounds of fuel per hour Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 5122983 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.9 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	11.2 113 7 6 60.10 467 449 0 1463.	33706 390861 66059 2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	8 15 15 1 11.2 13.5 9 59.99 466 452 8 1461.9 48.1	18,56 18,40 18,27 55,23 48,03
Coal Scale (B.) 38902 Coal Scale (C.) 47783 Total Pounds of Fuel 10.7 Pounds of fuel per hour 10.7 Limestone (Klbs/hr) 5122983 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	11.2 11.2 11.3 7 6 60.10 467 449 0 1463.	390861 66059 2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	11.2 11.2 135 9 59.99 466 452 8 1461.9 48.1	18,40 18,27 55,23 48,03
Coal Scale (C.) 47783 Total Pounds of Fuel Pounds of fuel per hour Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 5122983 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	8 11.2 113 7 6 60.10 467 449 0 1463.	2 11.8 5123111 5619.9 0 60.31 467 0 456 .8 1461.8	11.2 135 9 59.99 466 452 8 1461.9 48.1	18,27 55,23 48,03 13,02
Total Pounds of Fuel Pounds of fuel per hour Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 5122982 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	11.2 113 7 6 60.10 467 449 0 1463.	2 11.8 5123111 5619.9 0 60.31 7 467 0 456 .8 1461.8	11.2 135 9 59.99 466 452 8 1461.9 48.1	55,23 48,03 13,02
Pounds of fuel per hour Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 5122983 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	113 7 6 60.10 467 449 0 1463.	5123111 5619.9 0 60.31 467 0 456 .8 1461.8	59.99 466 452 8 1461.9 48.1	48,03. 13,02.
Limestone (Klbs/hr) 10.7 Limestone Scale (lbs) 512298 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.4 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	113 7 6 60.10 467 449 0 1463.	5123111 5619.9 0 60.31 467 0 456 .8 1461.8	59.99 466 452 8 1461.9 48.1	48,03. 13,02.
Limestone Scale (lbs) 512298 MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	113 7 6 60.10 467 449 0 1463.	5123111 5619.9 0 60.31 467 0 456 .8 1461.8	59.99 466 452 8 1461.9 48.1	
MW Totals (MWh) 5550. Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	7 6 60.10 467 449 0 1463.	5619.9 0 60.31 467 0 456 .8 1461.8	59.99 466 452 8 1461.9 48.1	
Output (MWh-gross) 59.56 Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	6 60.10 467 449 0 1463.	0 60.31 467 0 456 .8 1461.8	59.99 466 452 8 1461.9 48.1	69.
Steam Flow (Klbs/hour) 464 Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	467 449 0 1463.	467 456 .8 1461.8	466 452 8 1461.9 48.1	
Feed Water (Klbs/hr) 452 Boiler Master (psig) 1460.4 Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	449 0 1463.	.8 456 .8 1461.8	452 8 1461.9 48.1	
Boiler Master (psig) 1460. Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	0 1463.	.8 1461.8	8 1461.9 48.1	
Fuel Master (Klbs/hr) 48.2 NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64			48.1	
NOx (lbs/mmBtu) 0.038 Differential Freeboard 7.0 Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64		48.0		
Differential Freeboard Bed Temperature (F) Bed Depth (in.) PA Flow (Klbs/hr) SA Flow (Klbs/hr) Oxygen (%) Opacity (%) 7.0 1636 246 7.0 1636 7.0 1636 259.0 259.0 259.0 2.97	48.1		0.020	
Bed Temperature (F) 1636 Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	0.039	9 0.037	JU.U38	
Bed Depth (in.) 26 PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	7.0	6.5	6.8	
PA Flow (Klbs/hr) 319 SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	1637	7 1641	1638	
SA Flow (Klbs/hr) 259.0 Oxygen (%) 2.97 Opacity (%) 2.64	25	25	25	
Oxygen (%) 2.97 Opacity (%) 2.64	313	314	315	
Opacity (%) 2.64	263.6	6 259.5	260.7	
	2.98	3 2.95	2.97	
Coulo an Manarida (mm)	2.46	2.78	2.63	
Carbon Monoxide (ppm) 1	4	5	3	
Bag house (Dp inches) 3.2	3.2	3.3	3.2	
Exit gas Temperature (F) 315	314	314	314	
Output (MWh-net) 54.71	55.00	2 55.07	54.93	
Soot Blowing	55.02		10. E. W.	
Ammonia Flow (lb/hour) 82	33.02	81	82	
MPU Fireman Chip Lue	 83	•	•	

Date:September 28, 2011	Boiler: B-09 Recorded by: Thomas E. Rec				
Test: Ammonia	Run: No. 2	Testing by: Pla		ntal Services, Inc.	
Methods: USEPA Methods	1, 2, and 3A,				
Parameter	Start	Mid	Stop	Avg. Net	
Time	14:50		16:06	1:1	
Coal Scale (A.)	54573		75049	20,47	
Coal Scale (B.)	925968		946211	20,24	
Coal Scale (C.)	83296		103442	20,14	
Total Pounds of Fuel				60,86	
Pounds of fuel per hour				48,05	
Limestone (Klbs/hr)	12.1	11.9	12.5	12.2	
Limestone Scale (lbs)	323866		339625	15,75	
MW Totals (MWh)	1715684	The second secon	1715759	7	
Output (MWh-gross)	59.25	59.7	59.6	59.52	
Steam Flow (Klbs/hour)	461	461	461	461	
Feed Water (Klbs/hr)	449	443	446	446	
Boiler Master (psig)	1459.8	1461.6	1461.8	1461.1	
Fuel Master (Klbs/hr)	48.0	48.1	48.0	48.0	
NOx (ppm)	26	25	28	26	
Differential Freeboard	6.5	6.5	6.5	6.5	
Bed Temperature (F)	1645	1647	1653	1648	
Bed Depth (in.)	24	24	25	24	
PA Flow (Klbs/hr)	317	315	316	316	
SA Flow (Klbs/hr)	253.5	252.8	250.5	252.3	
Oxygen (%)	3.13	3.03	3.01	3.06	
Opacity (%)	2.92	2.69	2.23	2.61	
Carbon Monoxide (ppm)	6	2	5	4	
Bag house (Dp inches)	4.2	4	4.5	4.2	
Exit gas Temperature (F)	320	321	314	318	
Output (MWh-net)	54.43	54.84	54.63	54.63	
Soot Blowing	wd ===			Construction and Park Inc. (1997). The Construction of the Constru	
Ammonia Flow (lb/hour)	86	85	85	85	
MPU Fireman	Chip Luedtke a	and Dan Wier			
NOTES: B9 is found on graph	nic 103, turbine is	on graphic 140.			


Date:September 28, 2011	Boiler: B-09 Recorded by: Thomas E. Reed				
Test: Ammonia	Run: No. 3	ntal Services, Inc.			
Methods: USEPA Method	s 1, 2, and 3A,				
Parameter	Start	Mid	Stop	Avg. Net	
Time	15:30		16:42	1:1	
Coal Scale (A.)	382157		401681	19,52	
Coal Scale (B.)	953278		972557	19,27	
Coal Scale (C.)	910394		929567	19,17	
Total Pounds of Fuel				57,97	
Pounds of fuel per hour		The second second second		48,31	
Limestone (Klbs/hr)	12.5	12.6	13.4	12.8	
Limestone Scale (lbs)	345586		361289	15,70	
MW Totals (MWh)	5785	And the second s	5857	7:	
Output (MWh-gross)	59.96	59.49	59.44	59.63	
Steam Flow (Klbs/hour)	464	460	460	461	
Feed Water (Klbs/hr)	451	448	448	449	
Boiler Master (psig)	1462.6	1458.6	1460.3	1460.5	
Fuel Master (Klbs/hr)	47.9	48.2	48.0	48.0	
NOx (ppm)	35	30	36	34	
Differential Freeboard	6.0	6.0	6.0	6.0	
Bed Temperature (F)	1640	1661	1664	1655	
Bed Depth (in.)	25	25	26	25	
PA Flow (Klbs/hr)	310	313	312	312	
SA Flow (Klbs/hr)	250.3	249.5	250.3	250.0	
Oxygen (%)	3.00	2.92	3.05	2.99	
Opacity (%)	2.45	2.67	2.34	2.49	
Carbon Monoxide (ppm)	5	5	2	4	
Bag house (Dp inches)	3.2	3.1	3.4	3.2	
Exit gas Temperature (F)	315	315	316	315	
Output (MWh-net)	55.04	54.62	54.73	54.80	
Soot Blowing				Province of the control of the contr	
Ammonia Flow (lb/hour)	99	103	98	100	
MPU Fireman	Dan Wier				
NOTES: B9 is found on grap	hic 103, turbine is	on graphic 140.			

Date:September 29, 2011	Boiler: B-09	Recorded by: Thomas E. Reed			
Test: Sulfuric Acid Mist	Run: No. 1	Testing by: Pla		tal Services, Inc.	
Methods: USEPA Method	s 1, 2, and 3A, 4				
Parameter	Start	Mid	Stop	Avg. Net	
Time	9:44		10:48	1:0	
Coal Scale (A.)	535828		553348	17,52	
Coal Scale (B.)	105202		122589	17,38	
Coal Scale (C.)	60934		78222	17,28	
Total Pounds of Fue				52,19	
Pounds of fuel per hour				48,93	
Limestone (Klbs/hr)	9.6	10.8	9.5	10.0	
Limestone Scale (lbs)	472540		482939	10,399	
MW Totals (MWh)	6313		6377	64	
Output (MWh-gross)	58.75	59.94	59.42	59.37	
Steam Flow (Klbs/hour)	458	463	460	460	
Feed Water (Klbs/hr)	448	443	448	446	
Boiler Master (psig)	1461.8	1461.1	1460.8	1461.2	
Fuel Master (Klbs/hr)	48.5	48.5	49.1	48.7	
BARI (Klbs/hr)				#DIV/0!	
Differential Freeboard	7.5	7.5	7.8	7.6	
Bed Temperature (F)	1651	1651	1643	1648	
Bed Depth (in.)	25	26	26	26	
PA Flow (Klbs/hr)	352	344	355	350	
SA Flow (Klbs/hr)	198.8	202.4	205.5	202.2	
Oxygen (%)	2.5	2.54	2.82	2.62	
Opacity (%)	2.23	2.61	1.90	2.25	
Carbon Monoxide (ppm)	6	3	5	5	
Bag house (Dp inches)	4.2	4.2	4.3	4.2	
Exit gas Temperature	311	312	317	313	
Output (MWh-net)	54.73	54.94	54.05	54.57	
Soot Blowing				The second secon	
Ammonia Flow (lb/hour)	ong Stat			#DIV/0!	
MPU Fireman	Evan Moen				
NOTES: B9 is found on grap	hic 103, turbine is	on graphic 140.			

Date:September 29, 2011	Boiler: B-09 Recorded by: Thomas E. Rec				
Test: Sulfuric Acid Mist	Run: No. 2	Testing by: Pla		ntal Services, Inc.	
Methods: USEPA Method	s 1, 2, and 3A,				
Parameter	Start	Mid	Stop	Avg. Net	
Time	11:40		12:52	1:1	
Coal Scale (A.)	567170		587344	20,17	
Coal Scale (B.)	136264		156213	19,94	
Coal Scale (C.)	91798		111613	19,81	
Total Pounds of Fuel				59,93	
Pounds of fuel per hour	124022			49,94	
Limestone (Klbs/hr)	9.1	9.5	10.3	9.6	
Limestone Scale (lbs)	490966		502409	11,44	
MW Totals (MWh)	6428		6498	7	
Output (MWh-gross)	58.72	58.51	60.16	59.13	
Steam Flow (Klbs/hour)	456	455	465	459	
Feed Water (Klbs/hr)	437	439	444	440	
Boiler Master (psig)	1459.4	1459.1	1462.6	1460.4	
Fuel Master (Klbs/hr)	49.4	49.7	49.7	49.6	
BARI (Klbs/hr)	/			#DIV/0!	
Differential Freeboard	8.2	8.5	8.5	8.4	
Bed Temperature (F)	1649	1637	1644	1643	
Bed Depth (in.)	28	29	28	28	
PA Flow (Klbs/hr)	360	352	356	356	
SA Flow (Klbs/hr)	186.4	186.4	190.1	187.6	
Oxygen (%)	2.63	2.6	2.47	2.57	
Opacity (%)	2.83	2.36	2.36	2.52	
Carbon Monoxide (ppm)	0	1	0	0	
Bag house (Dp inches)	4.7	2.9	2.8	3.5	
Exit gas Temperature	317	318	320	318	
Output (MWh-net)	53.53	53.81	55.13	54.16	
Soot Blowing					
Ammonia Flow (lb/hour)			Sing Sing	#DIV/0!	
MPU Fireman	Evan Moen	-			
NOTES: B9 is found on grap	hic 103, turbine is	on graphic 140.			

Date:September 29, 2011	Boiler: B-09	B-09 Recorded by: Thomas E. Reed				
Test: Sulfuric Acid Mist	Run: No. 3	Testing by: Platt Environmental Services, Inc.				
Methods: USEPA Method	<u> </u>					
Parameter	Start	Mid	Stop	Avg. Net		
Time	13:25		14:27	1:		
Coal Scale (A.)	596813	And the second s	613845	17,0		
Coal Scale (B.)	165607		182459	16,8		
Coal Scale (C.)	120964		137698	16,7		
Total Pounds of Fuel	Conference of the Conference o			50,6		
Pounds of fuel per hour				48,9		
Limestone (Klbs/hr)	11.5	12	12.7	12.1		
Limestone Scale (lbs)	508573		521578	13,00		
MW Totals (MWh)	6532		6596			
Output (MWh-gross)	61.37	60.98	60.9	61.08		
Steam Flow (Klbs/hour)	471	469	469	470		
Feed Water (Klbs/hr)	457	451	456	455		
Boiler Master (psig)	1472.9	1464.8	1454.8	1464.2		
Fuel Master (Klbs/hr)	49.5	48.7	48.7	49.0		
BARI (Klbs/hr)	/			#DIV/0!		
Differential Freeboard	7.5	7.4	7.5	7.5		
Bed Temperature (F)	1652	1665	1669	1662		
Bed Depth (in.)	27	27	28	27		
PA Flow (Klbs/hr)	352	354	352	353		
SA Flow (Klbs/hr)	194.9	202.4	208.7	202.0		
Oxygen (%)	2.38	2.49	2.69	2.52		
Opacity (%)	2.53	2.25	1.84	2.21		
Carbon Monoxide (ppm)	1	0	0	0		
Bag house (Dp inches)	3.3	3.5	3.5	3.4		
Exit gas Temperature	322	321	320	321		
Output (MWh-net)	56.23	55.90	55.30	55.81		
Soot Blowing			Ped 140	Control of the Contro		
Ammonia Flow (lb/hour)	PR 647			#DIV/0!		
MPU Fireman	Evan Moen					
NOTES: B9 is found on grap	hic 103, turbine is	on graphic 140.				

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Manitowoc Public Utilities

Manitowoc, Wisconsin

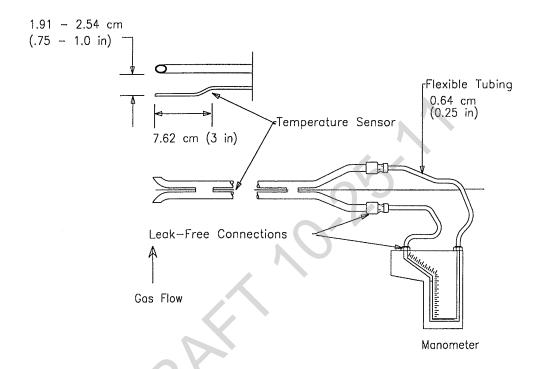
Date: September 28 and 29, 2011

Unit No: Boiler B09

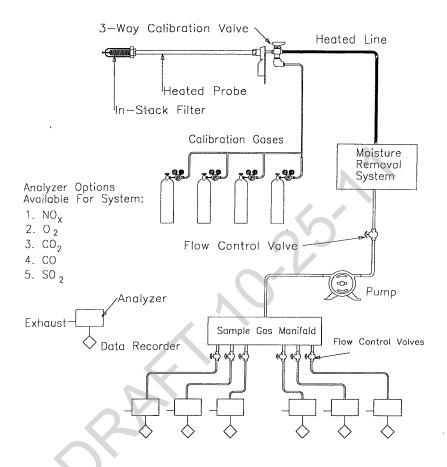
Test Location: Outlet Duct

Duct Diameter: 9.0 Feet

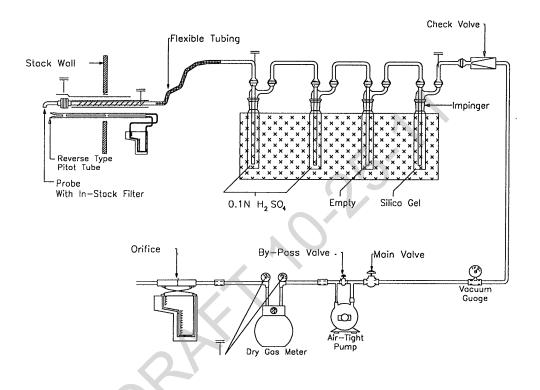
Duct Area: 63.62 Square Feet


No. Points Across 24

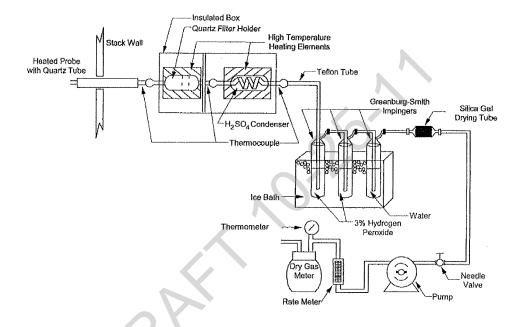
Diameter:


No. of Ports: 2

Port Length: 15.0 Inches


USEPA Method 2 - S-Type Pitot Tube Diagram

USEPA Method 3A Extractive Gaseous Sampling Diagram



USEPA Conditional Test Method 027 - Ammonia Sample Train Diagram

Consol Controlled Condensate – Sulfuric Acid Mist Sample Train Diagram

Client: **Manitowoc Public Utilities** Facility: **Manitowoc Generating Station**

Test Location: Boiler B09 Outlet Duct

Run:

Date: 9/28/2011

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 14.0$$
 $%O_2 = 5.3$

$$%O_2 = 5.3$$

$$%N_2 = 80.7$$

$$Md = 30.45$$

Wet Molecular Weight

$$Ms = Md x (1-Bws) + (18.0 x Bws)$$

$$Ms = 29.63$$

Meter Volume at Standard Conditions

$$Vm(std) = 17.647 \times Y \times Vm \times$$

$$Vm(std) = 64.674$$

Volume of Water Vapor Condensed

$$Vw(std) = 0.0471 \times (net H_2O gain)$$

Net
$$H_2O = 96.9$$

$$Vw(std) = 4.564$$

Moisture Content

$$\mathsf{Bws} = \frac{\mathsf{Vwc}(\mathsf{std})}{\mathsf{Vwc}(\mathsf{std}) + \mathsf{Vm}(\mathsf{std})}$$

ICR M5B/OTM28 2/2/10

Client: Manitowoc Public Utilities
Facility: Manitowoc Generating Station

Test Location: Boiler B09 Outlet Duct

Run: 1

Date: 9/28/2011

Average Duct Velocity

Vs = 85.49 x Cp x Sqrt DP (avg) x
$$(Ts (avg)/(Ps x Ms))^{1/2}$$

Volumetric Flow Rate (Actual Basis)

$$Q = Vs x A x 60$$

Volumetric Flow Rate (Standard Basis)

Volumetric Flow Rate (Standard Dry Basis)

$$Qstd(dry) = Qstd x (1-Bws)$$

$$Qstd(dry) = 137574$$

%ISO = 98.3

Isokinetic Variation:

%ISO =
$$0.0945 \times Ts \times Vm(std)$$

Vs x θ x An x Ps x (1-Bws)

ICR M5B/OTM28 2/2/10

Volumetric Flow Rate Example Calculations

Client: Manitowoc Public Utilities

Plant: Manitowoc, WI
Location: Boiler B09 Outlet Duct

Run: High Load Load, Run Pre 1

Date: 09/29/11

Moisture Content

$$Bws = e' - AP(t-t')$$

where: e' = saturated vapor pressure of water, in. Hg, at the wet bulb temperature, t'

A = $3.67 \times 10^{-4} (1+0.00064 (t'-32))$

P = absolute pressure, in. Hg, in the duct

t = dry bulb temperature, °F

t' = wet bulb temperature, °F

Bws = 0.081

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 14.0$$
 %O

$$%O_2 = 5.2$$
 $%N_2$

$$%N_2 = 80.8$$

Md = 30.45

Wet Molecular Weight

$$Ms = Md \times (1-Bws) + (18.0 \times Bws)$$

$$Md = 30.45$$

Bws =
$$0.081$$

Ms = ____29.44

Average Duct Velocity

Vs = 85.49 x Cp x Sqrt
$$\Delta P$$
 (avg) x (Ts (avg)/ (Ps x Ms))^{1/2}

$$Cp = 0.840$$
 $Ps = 0.840$ $Ps = 0.840$ $Ps = 0.824$ $Ps = 0.824$ $Ps = 0.824$ $Ps = 0.824$

Volumetric Flow Rate

Qs (Standard Basis)=
$$17.647 \times Q \times \frac{Ps}{460 + Ts (avg)}$$

Qs (Standard Basis)=
$$(1- Bws) \times 17.647 \times Q \times Ps \times 460 + Ts (avq)$$

Calculations for Ammonia by CTM 027

Concentration

$$\frac{\text{lbs NH4}}{\text{dscf}} = \frac{mg \text{ NH4 in sample}}{4.536 \times 10^5 \times \text{dscf}}$$

where:

$$4.536 \times 10^5 = mg/lb$$

dscf = Volume of gas sampled

Parts Per Million

ppm NH4 =
$$\frac{\text{lbs NH4}}{\text{dscf}}$$
 ÷ $\frac{18.04}{385 \times 10^6}$

where:

385 = Volume of 1 lb mole of gas at 68°F and 29.92 in. Hg
$$10^6$$
 = Conversion of ppm v/v

Emission Rate

lbs NH4/dscf \times dscfm \times 60 min/hr = lbs/hr NH4

Calculations for Sulfuric Acid Mist

$$\begin{split} V_{m(std)} &= 17.647 \ V_m \ Y \frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \\ C_{H_2SO_4} &= 1.0811 \times 10^{-4} \frac{(V_t - V_{tb}) \ N \left(\frac{V_{soln}}{V_a}\right)}{V_{m(std)}} \end{split}$$

ppm $H_2SO_4 = 3.9289 \times 10^6 \, C_{H_3SO_4}$ (expressed as H_2SO_4)

Where:

 ${\rm C_{H_2SO_4}}={
m Concentration}$ of sulfuric acid (including sulfur trioxide), dry basis, corrected to standard conditions. lb/dscf

N = Normality of barium chloride titrant, meg/ml

P_{bar} = Barometric pressure at the exit of the dry gas meter, inches of mercury

P_{std} = Standard pressure, 29.92 inches of mercury

 T_{std} = Standard temperature, 528 °R

 $17.647 = T_{std}/P_{std}$

V_a = Volume of sample aliquot titrated, ml

T_m = Dry gas meter average temperature, °R

V_m = Dry gas volume measured by dry gas meter, dcf

 $V_{m(std)}$ = Dry gas volume measured by dry gas meter, corrected to standard conditions, dscf

 V_{soln} = Total volume of solution in which the sulfuric acid sample is contained, ml

 V_t = Volume of barium perchlorate titrant used for the sample, ml

V_{tb} = Volume of barium perchlorate titrant used for the blank, ml

Y = Dry gas meter calibration factor

 $\Delta H = Average$ pressure differential across the orifice meter, inches of water

13.6 = Specific gravity of mercury

 1.0811×10^{-4} = Equivalent weight of sulfuric acid, lb/g-meg

$$3.9289 \times 10^6 = \frac{\text{dscf}}{\text{lb}}$$
 of sulfuric acid

Isokinetic Calculation Formulas

1.
$$V_{w(std)} = V_{lc} \left(\frac{\rho_w}{M_w}\right) \left(\frac{RT_{std}}{P_{std}}\right) = K_2 V_{lc}$$

2.
$$V_{m(std)} = V_m Y \left(\frac{T_{std}}{T_m}\right) \left(\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{P_{std}}\right) = K_1 V_m Y \frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_m}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d (1 - B_{ws}) + 18.0 (B_{ws})$$

$$6. \quad C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

8.
$$C_{acf} = 15.43K_i \left(\frac{m_n P_s}{V_{w(std)} + V_{m(std)} T_s} \right)$$

9.
$$C_S = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_s M_s}}$$
11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1 - B_{ws}) v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right) A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14. IKV =
$$\frac{T_{s}V_{m(std)}P_{std}}{T_{std}v_{s}\theta A_{n}P_{s}60(1-B_{ws})} = K_{4}\frac{T_{s}V_{m(std)}}{P_{s}v_{s}A_{n}\theta(1-B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5\%CO)}{0.264\%N_2 - (\%O_2 - 0.5\%CO)}\right) \times 100$$

Isokinetic Nomenclature

A = Cross-sectional area of stack or duct, square feet

 A_n = Cross-sectional area of nozzle, square feet

B_{ws} = Water vapor in gas stream, by volume

C_a = Acetone blank residue concentration, g/g

Cacf = Concentration of particulate matter in gas stream at actual conditions, gr/acf

 C_p = Pitot tube coefficient

C_s = Concentration of particulate matter in gas stream, dry basis, corrected to standard conditions, ar/dscf

IKV = Isokinetic sampling variance, must be 90.0 % ≤ IKV ≤ 110.0%

 M_d = Dry molecular weight of gas, lb/lb-mole

 M_s = Molecular weight of gas, wet basis, lb/lb-mole

M_w = Molecular weight of water, 18.0 lb/lb-mole

m_a = Mass of residue of acetone after evaporation, grams P_{bar} = Barometric pressure at testing site, inches mercury

 P_g = Static pressure of gas, inches mercury (inches water/13.6)

 P_s = Absolute pressure of gas, inches mercury = P_{bar} + P_g

P_{std} = Standard absolute pressure, 29.92 inches mercury

Q_{acfm} = Actual volumetric gas flow rate, acfm

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscfh

R = Ideal gas constant, 21.85 inches mercury cubic foot/°R-lb-mole

T_m = Dry gas meter temperature, °R

T_s = Gas temperature, °R

T_{std} = Absolute temperature, 528°R

V_a = Volume of acetone blank, ml

 V_{aw} = Volume of acetone used in wash, ml

 W_a = Weight of residue in acetone wash, grams

 m_n = Total amount of particulate matter collected, grams

 V_{1c} = Total volume of liquid collected in impingers and silica gel, ml

 V_m = Volume of gas sample as measured by dry gas meter, dcf

V_{m(std)} = Volume of gas sample measured by dry gas meter, corrected to standard conditions, dscf

 v_s = Gas velocity, ft/sec

V_{w(std)} = Volume of water vapor in gas sample, corrected to standard conditions, scf

Y = Dry gas meter calibration factor

ΔH = Average pressure differential across the orifice meter, inches water

 Δp = Velocity head of gas, inches water

 ρ_a = Density of acetone, 0.7855 g/ml (average)

 ρ_w = Density of water, 0.002201 lb/ml

 θ = Total sampling time, minutes

 $K_1 = 17.647 \,^{\circ}\text{R/in. Hg}$

 $K_2 = 0.04707 \text{ ft}^3/\text{m}$

 $K_4 = 0.09450/100 = 0.000945$

$$K_p = \text{Pitot tube constant, } 85.49 \frac{\text{ft}}{\text{sec}} \left[\frac{\text{(lb/lb - mole)(in.Hg)}}{\text{(°R)(in.H2O)}} \right]^{1/2}$$

%EA = Percent excess air

 $%CO_2$ = Percent carbon dioxide by volume, dry basis

 $%O_2$ = Percent oxygen by volume, dry basis

%CO = Percent carbon monoxide by volume, dry basis

%N₂ = Percent nitrogen by volume, dry basis

 $0.264 = Ratio of O_2 to N_2 in air, v/v$

28 = Molecular weight of N₂ or CO

 $32 = Molecular weight of O_2$

44 = Molecular weight of CO₂

13.6 = Specific gravity of mercury (Hg)

Volumetric Flow Nomenclature

A = Cross-sectional area of stack or duct, ft²

B_{ws} = Water vapor in gas stream, proportion by volume

 C_p = Pitot tube coefficient, dimensionless

 M_d = Dry molecular weight of gas, lb/lb-mole

 M_s = Molecular weight of gas, wet basis, lb/lb-mole

 M_w = Molecular weight of water, 18.0 lb/lb-mole

P_{bar} = Barometric pressure at testing site, in. Hg

 P_g = Static pressure of gas, in. Hg (in. H₂O/13.6)

DH= Static pressure of gas, in.H2O

 P_s = Absolute pressure of gas, in. Hg = P_{bar} + P_g

P_{std} = Standard absolute pressure, 29.92 in. Hg

Acfm = Actual volumetric gas flow rate

Scfm= Volumetric gas flow rate, corrected to standard conditions

Dscfm = Standard volumetric flow rate, corrected to dry conditions

R = Ideal gas constant, 21.85 in. Hg-ft³/°R-lb-mole

T_s = Average stack gas temperature, °F

T_m = Average dry gas meter temperature, °F

T_{std} = Standard absolute temperature, 528°R

v_s = Gas velocity, ft/sec

Vm(std)= Volume of gas sampled, corrected to standard conditions, scf

Vw(std) = Volume of water vapor in gas sample, corrected to standard conditions, scf

VIc= Volume of liquid collected

Y = Dry gas meter calibration factor

 Δp = Velocity head of gas, in. H₂O

 $K_1 = 17.647 \, ^{\circ}\text{R/in. Hg}$

%EA = Percent excess air

 $%CO_2$ = Percent carbon dioxide by volume, dry basis

 $%O_2$ = Percent oxygen by volume, dry basis

 $%N_2$ = Percent nitrogen by volume, dry basis

 $0.264 = Ratio of O_2 to N_2 in air, v/v$

0.28 = Molecular weight of N_2 or CO, divided by 100

0.32 = Molecular weight of O_2 divided by 100

0.44 = Molecular weight of CO₂ divided by 100

13.6 = Specific gravity of mercury (Hg)

Volumetric Air Flow Calculations

$$Vm (std) = 17.647 \times Vm \times \left[\frac{(P_{bar} + (\frac{DH}{13.6}))}{(460 + Tm)} \right] \times Y$$

$$Vw (std) = 0.0471 \times Vlc$$

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)} \right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$Ms = Md \times (1 - Bws) + (18 \times Bws)$$

$$V_{S} = \sqrt{\frac{(T_{S} + 460)}{M_{S} \times P_{S}}} \times \sqrt{DP} \times Cp \times 85.49$$

 $Acfm = Vs \times Area (of stack or duct) \times 60$

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

$$Dscfm = Scfm x (1-Bws)$$

MOSTARDI PLATT

MOISTURE CALCULATIONS

$$\begin{split} V_{wc(std)} &= \frac{(V_f - V_i) \, \rho_w \, R \, T_{std}}{P_{std} M_w} = 0.04707 (V_f - V_i) \\ V_{wsg(std)} &= \frac{(W_f - W_i) \, R \, T_{std}}{P_{std} \, M_w} = 0.04715 \, (W_f - W_i) \\ V_{m(std)} &= 17.64 \, V_m \, Y \frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \\ B_{ws} &= \frac{V_{wc(std)} + V_{wsg(std)}}{V_{wc(std)} + V_{wsg(std)}} + V_{m(std)} \end{split}$$

Where:

B_{ws} = Water vapor in gas stream, proportion by volume

 M_w = Molecular weight of water, 18.015 lb/lb-mole

P_{bar} = Barometric pressure at the testing site, in. Hg

P_{std} = Standard absolute pressure, 29.92 in. Hg

R = Ideal gas constant, 0.048137 (in. Hg)(ft³)/(g-mole)(°R) = $\frac{104.0242(m-14.5)(3.5)}{(3.5)(3.5)(3.5)}$

[21.8348(in. Hg)(ft³)/(lb-mole)(°R)]/453.592 g-mole/lb-mole

T_m = Absolute average dry gas meter temperature, °R

T_{std} = Standard absolute temperature, 528 °R

 V_f = Final volume of condenser water, ml

 V_i = Initial volume of condenser water, ml

 V_m = Dry gas volume measured by dry gas meter, dcf

 $V_{m(std)}$ = Dry gas volume measured by dry gas meter, corrected to standard conditions,

scf

V_{wc/std}) = Volume of condensed water vapor, corrected to standard conditions, scf

V_{wsg(std)} = Volume of water vapor collected in silica gel, corrected to standard conditions, scf

W_f = Final weight of silica gel, g

W_i = Initial weight of silica gel, g

Y = Dry gas meter calibration factor

ΔH = Average pressure exerted on dry gas meter outlet by gas sample bag, in. H₂O

 $\rho_{\rm w}$ = Density of water, 0.9982 g/ml

13.6 = Specific gravity of mercury (Hg)

 $17.64 = T_{std}/P_{std}$

 $0.04707 = \text{ft}^3/\text{ml}$ $0.04715 = \text{ft}^3/\text{g}$

MOSTARDI PLATT

Coal Emission Rate Calculations

A pollutant emission rate (E), expressed as pounds of pollutant per million Btu heat input from the fuel combusted can be calculated by several methods as follows:

- A. $C = C_s/7000$ where, C = pollutant concentration, lb/dscf $c_s = pollutant$ concentration, grains/dscf
- B. If fuel flow is monitored and the fuel combusted during the test is sampled and analyzed for gross calorific value, then:

$$E = \frac{Q_{sd}C}{\text{fuel flow rate (lb/hr) GCV}} \times 10^{6}$$

where, E = lbs per million Btu

GCV = gross calorific value, Btu/lb

 Q_{sd} = dry volumetric gas flow at standard conditions, dscf/hr

C. If an integrated gas sample is taken during the test and analyzed for $\%\text{CO}_2$ or $\%\text{O}_2$, dry basis by volume, with an approved USEPA Method 3 or 3A gas analyzer, then

$$E = C F_c \frac{100}{(\%CO_2)}$$
 or, $E = C F \frac{20.9}{(20.9 - \%O_2)}$ where,

%CO₂ and %O₂ are expressed as percent values:

- F_c = a factor representing a ratio of the volume of carbon dioxide generated to the calorific value of the fuel combusted, 1800 scf CO_2 /million Btu for bituminous.
- F = a factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted, 9780 dscf/million Btu for bituminous.
- D. If fuel sample increments are taken and composited during the test and an ultimate analysis is performed and the GCV is determined, then

$$\begin{split} F_c &= \frac{321 \times 10^3 (\%C)}{GCV} \text{ where, } \%C = \text{carbon content by weight expressed as percent} \\ F &= \frac{\left[3.64 \, (\%H) + 1.53 \, (\%C) + 0.57 \, (\%S) + 0.14 \, (\%N) - 0.46 \, (\%O_2)\right]}{GCV} \times 10^6 \end{split}$$

- 1. H = Hydrogen, percent
- 2. C = Carbon, percent
- 3. S = Sulfur, percent
- 4. N = Nitrogen, percent
- 5. O = Oxygen, percent

LABORATORY REPORT

TEI Analytical, Inc. 7177 N. Austin Niles, IL 60714-4617 847-647-1345

PREPARED FOR:

PAGE 1 of 1

Jim Platt
Platt Environmental Services Inc.
1905 Mount Prospect Rd, Ste C
Des Plaines, IL 60018

Report #: 88075 Report Date: 10/7/2011 Sample Received: 10/3/11 12:00

M113908

TEI Number	Sample	Ammonia as NH4 (CTM-027) mg	Date Performed
88075	001	4.76	10/5/2011
88076	002	<0.2	10/5/2011
88077	003	3.66	10/5/2011
88078	004	<0.2	10/5/2011
88079	005	2.60	10/5/2011
88080	006	<0.2	10/5/2011
88081	007	<0.2	10/5/2011

Gavle E. O'Neill, Ph.D.

Platt Environmental Services, Inc.

		Chain-of-Cu	ıstod	y Form			
Project N	lumber: M1	13908	Date	Results F	Required:		
Client: M	anitowoc P	ublic Utilities	TAT	Required:			
Plant/Te	st Location:	Manitowoc, WI	Proje	ct Superv	isor: ALS		
Sample Number	Sample Date	Sample Point Identification		# of Conts	Sub Lab	Analysis Required	Volume, mls
001	9/28/11	Test 1- Imp 1		1	TEI	CTM027-Ammonia	217
002	9/28/11	Test 1- Imp 2		1	TEI	CTM027-Ammonia	144
003	9/28/11	Test 2- Imp 1		1	TEI	CTM027-Ammonia	229
004	9/28/11	Test 2- Imp 2		1	TEI	CTM027-Ammonia	139
005	9/28/11	Test 3- Imp 1		1	TEI	CTM027-Ammonia	274
006	9/28/11	Test 3- Imp 2		1	TEI	CTM027-Ammonia	147
007	9/28/11	H2SO4 Reagent Blank		1	TEI	CTM027-Ammonia	120
008							
009		No.					
010							
011							
012							
013							
014							
015							
016							
017							
018							
019							
020							
7~	Delivered to Lab by: Date/Time: Received by: Date/Time: Processed by: Date/Time: Laboratory Notes:						

Barium-Thorin Titrations

Analyst: Project/Project Number: Manifold MII3908

Date:

Barium Titrant Standardization	Run No. 1	Run No. 2	Run No. 3
Volume 0.01 N H ₂ SO ₄ titrated (ml)	20	20.	
Volume BaCl ₂ added (ml)	[4.7]	70	
Calculated BaCl ₂ normality	0.0102	6.0103	

mi; Must be <0.5 ml. Average BaCl₂ normality = $\frac{|DOOO|}{|DOOO|}$ A Standardization Blank (25 ml Water + 100 ml isopropanol) = $\frac{|DOOO|}{|OOOOO|}$

	1				Titrant Volume for Sample	for Sample	Titrant Volume Corrected for Blank
Sample Number	Sample Date	Sample Description	Total Volume	Sample Aliquot	Final Reading	Final Reading - Initial Reading = V_t ml .	(V _t - V _{tb}) mi
Ammonium Sulfate Controls 9/29	-	Test 1 Coil Banse 104	100	25	0.8	- b = 0, 3 - b, 3 = 0, 3 Average = 0.3	0,3.
	9/29	Tast 2 Coil Rinse	001	25	0.8	-6.6 = 0.3 -6.8 = 0.3 Average = 0.25	0.25
	9/29	Lest of Park	100	25	8.1	- (.4 = 0.2 - (.6 Average = 0.2	0.2
	9/29	Trest 1 aAlac	90)	9ml sample 17.7		- 16.0 = 1.2 -17.2 = 1.2 Average = 1.2	1.2
9						- Average ≍	
	4 %					Average	
		H ₂ O ₂ Reagent Blank	, de			Average =	^q 2
				The state of the s		**************************************	

^{*} All titrations must be performed in replicate with agreement of 0.1% or 0.2 ml, whichever is larger.

\$

Platt Environmental Services, Inc.

Droinet N	lumbor	M /13908	Chain-of-C		-				
		***************************************		·	Date Results Required:				
		owoc Public L	***************************************		Required	*** ***********************************			
Plant/Te	st Location	". Manitowow,	WI	Proje	ect Super	visor:	ALS		
Sample Number	Sample Date	Sample Point Identification	1		# of Conts	Sub Lab	Analysis Required .	Volume mls	
001	9/28	ctm 027	Run 1		3				
002	9/28	ctm 027			3				
003	9/28	efm 027	Run 3		3				
004	2/28	0.1N 42804	FIRED BL	ank	1		·		
005	9/29	ces ,	Run 1	-	2				
006	9/29	ecs ,			2				
007	9/29	eas	Rein 3		2				
800	9/29	3% H202	Field Ble	ank.	27			,	
009	, ,,								
010				710	,		/ 14 NA		
011.	*****			· · · · · · · · · · · · · · · · · · ·					
012				1					
013							***************************************		
014									
015				***					
016			Ψ11/	***************************************					
017			•		·····			1	
018	T. V.							-	
019	 -	***			:			-	
020		,		~~,u				 	
Ho	to Lab by:	0930	eived by: Da	ate/Time	1399	Processe	od by: Date/Time:	10/5/11	

LAB NO.

2011-1341-1

DATE REC'D

10/04/11

DATE SAMPLED

09/28/11

SAMPLED BY

CLIENT

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090
MANITOWOC, WI 54221

SAMPLE IDENTIFICATION —

B9 AMMONIA STACK TEST 09/28/11

DATE REPORTED: 10/14/11

% MOISTURE	% ASH	% VOLATILE	% FIXED CARBOI	V BTU/LBS	% SULFUR
AS REC ¹ D 11.85	1.29	XXXX	xxxx	12896	5.00
DRY BASIS	1.46	XXXX	XXXX	14630	5.67
M-A-FREE				14847	and how him him had use and the win him

ULTIMATE	ANALYSIS	1
	% As Received	Dry Basis
Carbon	71.87	81.53
Hydrogen	3.18	3.61
Nitrogen	1.25	1.42
Ash	1.29	1.46
Sulfur	5.00	5.67
Oxygen	5.56	6.31
Moisture	11.85	A CONTRACTOR OF THE PARTY OF TH

NOTE:	XXXX	INDICATES	ANALYSIS	WAS	NOT	REQUESTED	
				\mathbf{R}	espec	tfully Submitted	_

FORM # 21

LAB NO.

2011-1341-2

DATE REC'D

10/04/11

DATE SAMPLED

09/29/11

SAMPLED BY

CLIENT

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION -

B9 S03 STACK TEST 09/29/11

DATE REPORTED: 10/14/11

	% MOISTURE	% ASH	% VOLATILE	% FIXED CARBO	n btu/lbs	% SULFUR
AS REC'I	12.46	2.13	XXXX	XXXX	12414	4.29
DRY BAS	[\$	2.43	XXXX	XXXX	14181	4.90
M-A-FREI					14534	

ULTIMATE	ANAL	YSIS	7	
		Received	Dry Basis	
Carbon		65.42	74.73	i
Hydrogen		3.38	3.86	- /
Nitrogen		1.07	1.22	
Ash		2.13	2.43	
Sulfur		4.29	4.90	- 1
Oxygen		11.25	12.86	
Moisture		12.46		

NOTE:	XXXX	INDICATES	ANALYSIS	WAS	\mathbf{NOT}	REQUESTED	
NOTE:	XXXX	INDICATES	ANALYSIS	WAS	NOT	REQUESTED	

Respectfully	Submitted	
ACCOPACION OF THE PARTY		

FORM #21

Client: Manitowoc Public Utilities Facility: Manitowoc Generating Station Test Location: Boiler B09 Outlet Duct

CTM007	9/28/2011	000	9/29/2011
CTM027	9/20/2011	<u>ccs</u>	9/29/2011
% Hydrogen	3.61	% Hydrogen	3.86
% Carbon	81.53	% Carbon	7 4.73
% Sulfur	5.67	% Sulfur	4.90
% Nitrogen	1.42	% Nitrogen	1.22
% Oxygen	6.31	% Oxygen	12.86
HHV (Btu/lb)	14630	HHV (Btu/lb)	14181
Fd(dscf/MMBtu)=	9460.66	Fd(dscf/MMBtu)=	8845.32
Fc(scf/MMBtu)=	1788.87	Fc(scf/MMBtu)=	1691.58

Project Number	M113908	Operating Level:	Preliminary Flow
Client:	Manitowoc Public Utilities	Run No.:	1
Plant:	Manitowoc, WI	Date:	9/27/2011
Location:	Boiler B09 Outlet Duct	Start Time:	14:53
Pitot ID:	179-A	End Time:	15:12
Pitot Coefficient:	0.840	RM Testers:	ALS/rods
Probe Length:	10.0'	Port Length:	16"

Port	Point	DP (in. H ₂ O)	Sqrt. DP	Temp (°F)	Velocity (V)	Port Po	oint	DP (in. H₂O)	Sqrt. DP	Temp (°F)	Velocity (V)
Α	1	0.25	0.5000	328.0	34.60	В	1	0.18	0.4243	328.0	29.36
Α	2	0.26	0.5099	328.0	35.29	В	2	0.26	0.5099	328.0	35.29
Α	3	0.26	0.5099	329.0	35.31	В	3	0.21	0.4583	329.0	31.74
Α	4	0.24	0.4899	329.0	33.93	В	4	0.19	0.4359	329.0	30.19
Α	5	0.21	0.4583	329.0	31.74	В	5	0.18	0.4243	330.0	29.40
Α	6	0.23	0.4796	329.0	33.21	В	6	0.14	0.3742	330.0	25.93
Α	7	0.22	0.4690	329.0	32.48	В	7	0.13	0.3606	330.0	24.98
Α	8	0.19	0.4359	328.0	30.17	В	8	0.10	0.3162	330.0	21.91

Test Parameters				
P _{bar} - Barometric pressure, inches Hg	29.15	% CO ₂	14.00	
P _g - Stack Pressure, inches of H ₂ O	-1.00	% O ₂	5.20	
P _s - Absolute stack pressure, inches Hg	29.08	% N ₂	80.80	
t _s - Average stack temperature, °F	328.9	Md - dry basis lb/lb mole	30.45	
Shape of Duct: (C or R)	С	Ms - wet basis lb/lb mole	29.18	
Stack Diameter, Feet	9	Wet Bulb Temp(t'):	135.000	
		Dry Bulb Temp(t'):	330.000	
		Bws - Moisture content for	raction	0.102
Cross Sectional Area of Stack, Ft ²	63.62	Moisture determined by wh	o/db (Y or N)	Υ
Method 2 Results				
Average DP	0.2031	Q - ACFM	118,220	
Average Sqrt DP	0.4473	Qsd - DSCFM	69,046	
Average Velocity Vs (ft/sec)	30.972	Qs - SCFM	76,889	
		Qs - SCFH	4,613,327	
Stack Liner Material:	S B	for Brick, S for Steel		
Default WAF:	0.995	for blick, 5 for steer		
Calculated WAF:	0.550			
	N D	for Dofault C for Calculated A	l for None	
Type of WAF Applied:	N D	for Default, C for Calculated, N	v ior ivone	
Actual WAF Applied to all runs:				

Client: Manitowoc Public Utilities
Facility: Manitowoc Generating Station

Test Location: Boiler B09 Outlet Duct

Project #: M113908

Test Method: CTM-027
Test Engineer: A. L. Sorce
Test Technician: Rod Sollars
Temp ID: CM-11
Meter ID: CM-11
Pitot ID: 179-A

Pitot Tube Coefficient: 0.840

Probe Length: 10.1

ft

in.

Probe Liner Material: Glass

Nozzle Diameter: 0.305

Nozzle Kit ID Number and Material: Teflon #5
Meter Calibration Factor (Y): 1.015
Meter Orifice Setting (Delta H): 1.579
Sample Plane: Horizontal

Port Length: 15.00 in.
Port Size (diameter): 6.00 in.

Port Type: Flange
Duct Shape: Circular
Diameter 9 ft

Duct Area: 63.617 Sq. Ft.

Upstream Diameters: >0.5
Downstream Diameters: >2.0
Number of Ports Sampled: 2
Number of Points per Port: 12
Minutes per Point: 2.5
Minutes per Reading: 5.0

Total Number of Traverse Points: 24

Test Length: 60 min.

Test Length: 60
Train Type: Hot Box

Source Condition: Normal Load

of Runs 3

Mostardi Platt ICR M5B/OTM28 2/2/10

Client: Manitowoc Public Utilities Facility: Manitowoc Generating Station

Test Location: Boiler B09 Outlet Duct

Test Method: CTM-027

		Run 1	Run 2	Run 3
Identify Analyte:	Ammonia (NH4)			
Molecular Weight:	18.01			
mg (net) collected:		4.76	3.66	2.6

Mostardi Platt ICR M5B/OTM28 2/2/10

Run 1-Method CTM-027

Client: Manitowoc Public Utilities Date: 9/28/11 Facility: Manitowoc Generating Station
Test Location: Boiler B09 Outlet Duct
Source Condition: 69.2 MW 11:30 12:40 Start Time: End Time:

DRY GAS METER C	ONDITIONS		STACK CONDITION	s			
ΔН:	3.38	in. H₂O	Static Pressure	0,20	in. H₂O		
Meter Temperature, Tm:	67.5	°F	Flue Pressure (Ps):	29.10	in. Hg. abs.		
Sqrt ΔP:	0.870	in. H₂O	Carbon Dioxide:	14.00	%		
Stack Temperature, Ts:	341.3	°F	Oxygen:	5.30	%		
Meter Volume, Vm:	64.915	ft ³	Nitrogen:	80.70	%		
Meter Volume, Vmstd:	64.674	dscf	Gas Weight dry, Md:	30.452	lb/lb mole		
Meter Volume, Vwstd:	4.564	wscf	Gas Weight wet, Ms:	29.631	lb/lb mole		
Isokinetic Variance:	98.3	%1	Excess Air:	33.115	%		
			Gas Velocity, Vs:	60.198	fps		
Test Length	60.00	in mins.	Volumetric Flow:	229,778	acfm		
Nozzle Diameter	0.305	in inches	Volumetric Flow:	137,574	dscfm		
Barometric Pressure	29.09	in Hg	Volumetric Flow:	147,282	scfm		
Calculated Fo:	1.11		Fo Validity:	#N/A			
MOISTURE DETERMINATION							

Initial Impinger Content: Silica Initial Wt. Final Impinger Content: 2130.1 ml Silica Final Wt. 817.0 Difference: Difference: 76.1 20.8

Total Water Gain: 96.9 Moisture, Bws:

0.066

		Velocity	Orifice	Actual		Stack	Meter	Temp	Collected	Point
Port-	Clock	Head Ap	ΔН	Meter Vol.	Sqrt.	Temp	Iniet	Outlet	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	Дρ	°F.	°F	۴	ft ³	ft/sec
A-1	11:30:00	0.82	3,61	14.929	0,906	340	63	62	2.801	62.682
A-2	11:32:30	0.72	3.17	17,730	0.849	340	64	62	2.680	58.735
A-3	11:35:00	0.63	2.77	20.410	0.794	341	66	62	2.450	54.942
A-4	11:37:30	0.40	1.76	22,860	0.632	341	66	62	1.980	43.779
A-5	11:40:00	0.51	2.25	24.840	0.714	341	68	62	2.250	49.433
A-6	11:42:30	0.53	2.33	27.090	0.728	341	69	63	2.260	50.393
A-7	11:45:00	0.86	3.79	29.350	0.927	341	70	63	2.860	64,192
A-8	11:47:30	0.55	2.42	32.210	0.742	342	71	63	2.320	51.335
A-9	11:50:00	1.00	4.40	34.530	1.000	342	71	64	3.080	69,220
A-10	11:52:30	1.00	4.40	37.610	1.000	342	71	64	3.080	69.220
A-11	11:55:00	0.93	4.09	40.690	0.964	342	72	64	2.940	66,754
A-12	11:57:30	1.00	4.40	43.630	1.000	342	72	64	3.241	69.220
	12:00:00			46.871						
									,	
B-1	12:10:00	0.68	2.99	46.871	0.825	341	67	65	2.549	57,081
B-2	12:12:30	0.68	2.99	49.420	0.825	341	68	65	2,560	57.081
B-3	12:15:00	0.69	3.04	51.980	0.831	341	69	65	2.610	57.499
B-4	12:17:30	0.67	2.95	54,590	0.819	341	70	65	2.480	56.659
B-5	12:20:00	0.65	2.86	57.070	0.806	341	71	65	2.540	55.807
B-6	12:22:30	0.62	2,73	59.610	0.787	341	72	66	2.450	54.504
B-7	12:25:00	0.70	3.08	62.060	0.837	341	74	66	2.570	57.914
B-8	12:27:30	0.84	3.70	64,630	0.917	341	75	66	2.840	63.441
B-9	12:30:00	1.00	4.40	67.470	1.000	342	75	67	3,130	69.220
B-10	12:32:30	1.10	4.84	70,600	1.049	342	75	67	3.190	72.599
B-11	12:35:00	1.00	4.40	73.790	1.000	342	75	68	3.140	69.220
B-12	12:37:30	0.85	3.75	76,930	0.922	342	76	68	2.914	63.818
	12:40:00			79.844						

3.38 0.870 341.3 67.5 Average

Mostardi Platt

ICR M5B/OTM28 2/2/10

Run 2-Method CTM-027

Client: Manitowoc Public Utilities Date: 9/28/11 Facility: Manitowoc Generating Station Start Time: 13:45 Location: Boiler B09 Outlet Duct End Time: 15:00

Source Condition: 75.0 MW

DRY GAS METER O	DRY GAS METER CONDITIONS			S	
ΔΗ:	3.55	In. H₂O	Static Pressure	0,20	in. H₂O
Meter Temperature, Tm:	68.7	°F	Flue Pressure (Ps):	29.10	in. Hg. abs.
Sqrt ΔP:	0.866	In. H ₂ O	Carbon Dioxide:	13.80	%
Stack Temperature, Ts:	341.3	°F	Oxygen:	5.50	%
Meter Volume, Vm:	67.124	cf	Nitrogen:	80.7	%
Meter Volume, Vmstd:	66.742	dscf	Gas Weight dry, Md:	30.428	lb/lb mole
Meter Volume, Vwstd:	5.021	wscf	Gas Weight wet, Ms:	29,558	lb/lb mole
Isokinetic Variance:	102.2	%l	Excess Air:	34,800	%
			Gas Velocity, Vs:	60,004	fps
Test Length	60.00	in mins.	Volumetric Flow:	229,037	acfm
Nozzle Diameter	0.305	in inches	Volumetric Flow:	136,536	dscfm
Barometric Pressure	29.09	in Hg	Volumetric Flow:	146,808	scfm
Calculated Fo:	1.12		Fo Validity:	#N/A	
		MOISTURE DETERMINATION			

Initial Impinger Content: 2041.2 m) Silica Initial Wt. 811.7 Final Impinger Content: 2131.0 Silica Final Wt. 828,5 Difference: 89.8 Difference: 16.8

Total Water Gain: 106,6

0.070 Moisture, Bws:

Velocity Orifice Actual Stack Meter Temp Collected Point Port-Clock Head ∆p ΔН Meter Vol. Sqrt. Temp Inlet Outlet Vol. Vel Point No In. H2O in. H2O ft³ ٩F ۰F ft³ Time ft/sec Др A-1 13:45:00 0.70 3.26 80.220 0.837 341 66 65 2.630 57.985 A-2 13:47:30 0.71 3.31 82.850 0.843 341 68 65 2.810 58.398 A-3 13;50:00 0.68 3,17 85.660 0.825 341 69 65 2.640 57.151 0.825 341 A-4 13:52:30 0.68 3.17 88.300 70 65 2.630 57.151 A-5 13:55:00 0.62 2.89 90,930 0.787 341 72 65 2,550 54,571 A-6 13:57:30 0.64 2.98 93.480 0.800 341 73 66 2.590 55.444 0.837 73 A-7 14:00:00 0.70 3.26 96,070 341 66 2.720 57.985 0.80 3.73 98.790 0.894 341 74 66 2.870 61.989 A-8 14:02:30 A-9 14:05:00 0.94 4.38 101,660 0.970 342 74 66 3.190 67,194 A-10 14:07:30 0,98 4.57 104.850 0.990 342 74 67 3,130 68,609 A-11 14:10:00 1.00 4.66 107.980 1.000 342 74 67 3.190 69.305 4.66 111,170 1.000 342 74 67 A-12 14:12:30 1.00 3.322 69,305 14:15:00 114.492 B-1 14:30:00 0.75 3.49 114.689 0.866 340 68 66 2.801 60.020 117.490 0.721 340 B-2 14:32:30 0.52 2.42 69 66 2.350 49,977 B-3 14:35:00 0.58 2.70 119.840 0.762 341 70 66 2.470 52.781 B-4 14;37;30 0.50 122.310 0.707 341 71 2.33 66 2.270 49.006 341 71 B-5 14:40:00 0.40 1.86 124.580 0.632 66 2.090 43.833 0.707 341 72 B-6 14:42:30 0.50 2.33 126.670 66 2.250 49.006 B-7 14:45:00 0.81 3.77 128.920 0.900 342 72 66 2.920 62.375 B-8 14:47:30 0.96 4.47 131.840 0.980 342 73 66 3.050 67.905 B-9 14:50:00 0.88 4,10 134,890 0.938 342 72 66 3,120 65,014 72 B-10 14:52:30 1.00 4.66 138.010 1.000 342 66 3.240 69.305 B-11 14:55:00 1.00 4.66 141.250 1.000 342 72 66 3.210 69,305 B-12 14:57:30 0.92 4.29 144.460 0.959 341 73 67 3.081 66.475 15:00:00 147.541 67.124 71.5 66.0 67.124 Total 0.866

341.3

68.7

3.55

Mostardi Platt

Average

ICR M5B/OTM28 2/2/10

Run 3-Method CTM-027

Client: Manitowoc Public Utilities
Facility: Manitowoc Generating Station
Location: Boiler B09 Outlet Duct

Source Condition: 72.0 MW

DRY GAS METER CONDITIONS		STACK CONDITIONS			
ΔΗ:	3.49	In. H₂O	Static Pressure	0.20	in. H₂O
Meter Temperature, Tm:	72.3	°F	Flue Pressure (Ps):	29,10	in. Hg. abs.
Sqrt ΔP:	0.862	In. H ₂ O	Carbon Dioxide:	14.10	%
Stack Temperature, Ts:	342.3	°F	Oxygen:	5.20	%
Meter Volume, Vm:	66.204	cf	Nitrogen:	80.7	%
Meter Volume, Vmstd:	65.382	dscf	Gas Weight dry, Md:	30,464	lb/lb mole
Meter Volume, Vwstd:	4.865	wscf	Gas Weight wet, Ms:	29.601	lb/lb mole
Isokinetic Variance:	100.7	%1	Excess Air: 3	32,289	%
			Gas Velocity, Vs: 5	9.723	fps
Test Length	60.00	in mins.	Volumetric Flow: 2	27,963	acfm
Nozzle Diameter	0.305	in inches	Volumetric Flow: 1	35,823	dscfm
Barometric Pressure	29.09	in Hg	Volumetric Flow: 1	45,930	scfm
Calculated Fo:	1.11		Fo Validity:	#N/A	

MOISTURE DETERMINATION

Initial Impinger Content: 2164.5 ml
Final Impinger Content: 2253.5 ml
Difference: 89.0

3.49

Silica Initial Wt. 796.6 Silica Final Wt. 810.9 Difference: 14.3 9/28/11 15:30

16:35

Date: Start Time: End Time:

Total Water Gain: 103.3

Moisture, Bws: 0.069

		Velocity	Orifice	Actual		Stack	Mete	r Temp	Collected	Point
Port-	Clock	Head ∆p	ΔН	Meter Vol.	Sqrt.	Temp	Inlet	Outlet	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	Дρ	۰F	°۴	۰F	ft ³	ft/sec
A-1	15:30:00	0.70	3.23	47.769	0.837	341	67	66	2.651	57.981
A-2	15:32:30	0.58	2.68	50.420	0.762	341	71	66	2.410	52.778
A-3	15:35:00	0.54	2.49	52.830	0.735	342	72	66	2,420	50.926
A-4	15:37:30	0.52	2.40	55.250	0.721	342	73	66	2.300	49.974
A-5	15:40:00	0.52	2.40	57.550	0.721	342	74	67	2.280	49.974
A -6	15:42:30	0.54	2.49	59,830	0.737	342	75	67	2.380	51.067
A-7	15:45:00	0.79	3,65	62,210	0.889	342	75	67	2.830	61,596
A-8	15:47:30	0.75	3.46	65.040	0.866	343	76	68	2.770	60.016
A-9	15:50:00	1.00	4.62	67.810	1.000	343	76	68	3.190	69.301
A-10	15:52:30	1.00	4.62	71.000	1.000	343	77	69	3,180	69.301
A-11	15:55:00	1.10	5.08	74.180	1.049	343	77	69	3.370	72,683
A-12	15;57:30	1.00	4.62	77.550	1.000	343	77	69	3,232	69.301
	16:00:00			80.782						
B-1	16:05:00	0.58	2.68	80.782	0.762	342	74	70	2.448	52,778
B-2	16:07:30	0.60	2.77	83.230	0.775	342	75	70	2.480	53.680
B-3	16:10:00	0.60	2.77	85.710	0.775	342	75	70	2.510	53.680
B-4	16:12:30	0.64	2.95	88.220	0.800	342	76	70	2.560	55,441
B-5	16:15:00	0.64	2.95	90.780	0.800	342	77	70	2.550	55,441
B-6	16:17:30	0.60	2.77	93.330	0.775	342	78	70	2.470	53,680
B-7	16:20:00	0.65	3.00	95.800	0.806	342	78	70	2.590	55.872
B-8	16:22:30	0.77	3.55	98.390	0.877	343	78	71	2.820	60.811
B-9	16;25;00	0.92	4.25	101.210	0.959	343	78	71	3.040	66.471
B-10	16:27:30	0.98	4.52	104.250	0.990	343	78	71	3.170	68.604
B-11	16:30:00	1.00	4.62	107.420	1.000	343	79	71	3.160	69.301
B-12	16:32:30	1.10	5.08	110,580	1.049	343	79	71	3.393	72,683
	16:35:00			113.973						
otal				66.204			75.6	68.9	66.204	

0.862

342.3

72.3

Mostardi Platt

Average

ICR M5B/OTM28 2/2/10

CONTROLLED CONDENSATE TEST RESULTS

Date:

Source:

9/29/2011

Project: M113908 Location: Manitowo

Manitowoc Public Utilities Boiler B09 Outlet Duct Condition:

High Load

Data Taken By:

A. L. Sorce

Pressure, Barometric(Hg"): 29.05 Pressure, Static(H ₂ O"): 0.20 Water Vapor in Flue Gas (Bws): (Persuance) Pressure, Static(Hg): 29.065 Initial Volume (cu.ft.) 6.69 Flue Gas % CO2 14.00 Final Volume (cu.ft.) 13.834 Flue Gas % O2 5.20 Meter Temperature (°F) 66.08 Ibs fuel/hr 489933 Meter Volume (dscf) 7.067 tons fuel/hr 24.4665 Meter Calibration (Y) 1.015 btu/lb 14181 Initial Volume (dscf) 421.9 Heat Input MMBtu/hr 693.918873 Final Wt. (grms or mls) 435.2 Fd based fuel factor 8845.32 Average Delta H (ΔH) 0.030 Water Vapor in Flue Gas (Bws): 0.00 Pressure, Barometric(Hg"): 29.05 Water Vapor in Flue Gas (Bws): 0.00 Pressure, Static(H ₂ O"): 0.20 Water Vapor in Flue Gas (Bws): 0.00 Initial Volume (cu.ft.) 4.308 Flue Gas % CO2 13.70 Final Volume (cu.ft) 10.351 Flue Gas % O2 5.50 Meter Temperature (Test 1:		Time:		08:40 - 09:40
Pressure, Static(H ₂ O"):	Pressure, Barometric(Hg"):	29.05			
Pressure, Stack(Hg"):		0.20	Water Vapor in Flue Ga	ns (Bws):	
Final Volume (cu.ft.)		29.065	•	, ,	
Meter Temperature (°F) 66.08 lbs fuel/hr 48933 Meter Volume (dscf) 7.067 tons fuel/hr 24.4685 Meter Calibration (Y) 1.015 btu/lb 14181 Initial Wt. (grms or mis) 421.9 Heat Input MMBtu/hr 693.918873 Final Wt. (grms or mis) 435.2 Fd based fuel factor 8845.32 Average Delta H (ΔH) 0.030 Time: 10:40 - 11: Test 2: Time: 10:40 - 11: Pressure, Barometric(Hg"): 29.05 Water Vapor in Flue Gas (Bws): 0.00 Pressure, Static(H ₂ O"): 0.20 Water Vapor in Flue Gas (Bws): 0.00 Mittal Volume (cu.ft.) 4.308 Flue Gas % CO2 13.70 Final Volume (cu.ft.) 10.351 Flue Gas % O2 5.50 Meter Temperature (°F) 71.40 lbs fuel/hr 4.944 Meter Volume (dscf) 5.918 tons fuel/hr 24.974 Meter Volume (dscf) 5.918 tons fuel/hr 70.312588 Final Wt. (grms or mis) 424.0 Heat Input MMBtu/hr 708.312588	Initial Volume (cu.ft.)	6.69	Flue Gas % CO2	14.00	
Meter Volume (dscf)	Final Volume (cu.ft.)	13.834	Flue Gas % O2	5.20	
Meter Volume (dscf)	Meter Temperature (°F)	66.08	lbs fuel/hr	48933	
Heat Input MMBtu/hr 693,918873 Final Wt. (grms or mls)		7.067	tons fuel/hr	24.4665	
Final Wt. (grms or mls)	Meter Calibration (Y)	1.015	btu/lb	14181	
Test 2:	Initial Wt. (grms or mls)	421.9	Heat Input MMBtu/hr	693,918873	
Time: 10:40 - 11:	Final Wt. (grms or mls)	435.2	Fd based fuel factor	8845.32	
Pressure, Barometric(Hg"):	Average Delta H (∆H)	0.030			
Pressure, Barometric(Hg"):					
Pressure, Barometric(Hg"):	Toet 2:		Timos		40:40 44:40
Pressure, Static(H₂O"): 0.20 Water Vapor in Flue Gas (Bws): Compressure (Bws): Com		29.05			10:40 - 11:40
Pressure, Stack(Hg"):	, - /		Water Vapor in Flue Ga	e (Bue):	0.07
Hiltial Volume (cu.ft.)	, - ,		water vapor in ride Ga	is (DWS)	0.07
Final Volume (cu.ft.)	, , , ,		Flue Gas % CO2	13.70	
Meter Temperature (°F)	, ,				
Meter Volume (dscf)	• •				
Meter Calibration (Y) 1.015 btu/lb 14181 Initial Wt. (grms or mls) 424.0 Heat Input MMBtu/hr 708.312588 Final Wt. (grms or mls) 434.6 Fd based fuel factor 8845.32 Average Delta H (ΔH) 0.030 12:25 - 13:2 Pressure, Barometric(Hg"): 29.05 29.05 Pressure, Static(H₂O"): 0.20 Water Vapor in Flue Gas (Bws): 0 Pressure, Stack(Hg"): 29.065 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 1,331 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 lbs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 Initial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	• • •				
Heat Input MMBtu/hr 708.312588 708.31258 708.312588 708.312588 708.312588 708.312588 708.31258 708.312588 708.312588 708.312588 708.312588 708.31258 708.31258	• •				
Final Wt. (grms or mls)	• •				
Time: 12:25 - 13:2	,-		· ·		
Time: 12:25 - 13:2 Pressure, Barometric(Hg"): 29.05 Pressure, Static(H₂O"): 0.20 Water Vapor in Flue Gas (Bws): 0 Pressure, Stack(Hg"): 29.065 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 Ibs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	,		na basca faci factor	0040.02	
Pressure, Barometric(Hg"): 29.05 Pressure, Static(H ₂ O"): 0.20 Water Vapor in Flue Gas (Bws): 0 Pressure, Stack(Hg"): 29.065 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 Ibs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	Average Detta II (211)	0.000			
Pressure, Barometric(Hg"): 29.05 Pressure, Static(H ₂ O"): 0.20 Water Vapor in Flue Gas (Bws): 0 Pressure, Stack(Hg"): 29.065 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 Ibs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 Initial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285					
Pressure, Static(H ₂ O"):			Time:		<u>12:25 - 13</u> :25
Pressure, Stack(Hg"): 29.065 nitial Volume (cu.ft.) 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 lbs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285				.	
Initial Volume (cu.ft.) 1.331 Flue Gas % CO2 14.20 Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 lbs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 Initial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	· · · · · · · · · · · · · · · · · · ·		Water Vapor in Flue Ga	s (Bws):	0.07
Final Volume (cu.ft.) 7.399 Flue Gas % O2 5.00 Meter Temperature (°F) 70.00 lbs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	1 - 1		FI 0 0/ 005	44.50	
Meter Temperature (°F) 70.00 Ibs fuel/hr 48985 Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285					
Meter Volume (dscf) 5.958 tons fuel/hr 24.4925 Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285					
Meter Calibration (Y) 1.015 btu/lb 14181 nitial Wt. (grms or mls) 408.5 Heat Input MMBtu/hr 694.656285	· · · · · · · · · · · · · · · · · · ·				
nitial Wt. (grms or mls)					
-inal Wt. (grms or mis) 419.3 Fd based fuel factor 8845.32	,		•		
Average Delta H (ΔH)	,		Fd based fuel factor	8845.32	

Project Number	M113908	Operating Level:	High Load
Client:	Manitowoc Public Utilities	Run No.:	Pre 1
Plant:	Manitowoc, WI	Date:	9/29/2011
Location:	Boiler B09 Outlet Duct	Start Time:	8:21
Pitot ID:	182-B	End Time:	8:34
Pitot Coefficient:	0.840	RM Testers:	ALS/rods
Probe Length:	12.0'	Port Length:	11.0"

		DP	Sqrt.	Temp	Velocity			DP	Sqrt.	Temp	Velocity
Port	Point	(in. H ₂ O)	DP	(°F)	(V)	Port P	oint	(in. H ₂ O)	DP	(°F)	(V)
Α	1	0.54	0.735	330.0	50.706	В	1	0.18	0.424	338.0	29.423
Α	2	0.58	0.762	333.0	52.650	В	2	0.64	0.800	338.0	55.480
Α	3	0.60	0.775	337.0	53.685	В	3	0.72	0.849	339.0	58.882
Α	4	0.61	0.781	338.0	54.164	В	4	0.69	0.831	339.0	57.642
Α	5	0.62	0.787	339.0	54.640	В	5	0.68	0.825	339.0	57.223
Α	6	0.61	0.781	340.0	54.232	В	6	0.64	0.800	340.0	55.549
Α	7	0.61	0.781	340.0	54.232	В	7	0.63	0.794	340.0	55.114
Α	8	0.62	0.787	340.0	54.675	В	8	0.76	0.872	340.0	60.534
Α	9	0.63	0.794	340.0	55.114	В	9	0.81	0.900	340.0	62.493
Α	10	0.89	0.943	340.0	65.507	В	10	0.90	0.949	340.0	65.874
Α	11	0.84	0.917	338.0	63.560	В	11	0.98	0.990	340.0	68.739
Α	12	0.83	0.911	337.0	63.141	В	12	0.98	0.990	340.0	68.739

Test Parameters				
P _{bar} - Barometric pressure, inches Hg	29.05	% CO ₂	14.00	
P _g - Stack Pressure, inches of H ₂ O	0.20	% O ₂	5.20	
P _s - Absolute stack pressure, inches Hg	29.06	% N ₂	80.80	
t _s - Average stack temperature, °F	338.5	Md - dry basis lb/lb mole	30.45	
Shape of Duct: (C or R)	С	Ms - wet basis lb/lb mole	29.44	
Stack Diameter, Feet	9			
•		Bws - Moisture content fi	action	0.081
Cross Sectional Area of Stack, Ft ²	63.62	Moisture determined by wh	o/db (Y or N)	N
Method 2 Results				
Average DP	0.6913	Q - ACFM	218,193	
Average Sqrt DP	0.8240	Qsd - DSCFM	128,795	
Average Velocity Vs (ft/sec)	57.163	Qs - SCFM	140,146	
		Qs - SCFH	8,408,786	

Project Number	M113908	Operating Level:	High Load
Company:	Manitowoc Public Utilities	Run No.:	Post 1/Pre 2
Plant:	Manitowoc, WI	Date:	9/29/11
Location:	Boiler B09 Outlet Duct	Start Time:	9:53
Pitot ID:	182-B	End Time:	10:03
Pitot Coefficient:	0.840	RM Testers:	ALS/rods
Probe Length:	12.0'	Port Length:	11.0"

		DP	Sqrt.	Temp	Velocity			DP	Sqrt.	Temp	Velocity
Port F	Point	(in. H₂O)	DP	(°F)	(V)	Port P	oint	(in. H ₂ O)	DP	(°F)	(V)
Α	1	0.56	0.748	341.0	52.009	В	1	0.57	0.755	341.0	52.471
Α	2	0.60	0.775	341.0	53.834	В	2	0.56	0.748	341.0	52.009
Α	3	0.63	0.794	341.0	55.164	В	3	0.50	0.707	341.0	49.144
Α	4	0.60	0.775	341.0	53.834	В	4	0.48	0.693	341.0	48.151
Α	5	0.57	0.755	341.0	52.471	В	5	0.47	0.686	341.0	47.647
Α	6	0.55	0.742	341.0	51.542	В	6	0.50	0.707	341.0	49.144
Α	7	0.56	0.748	341.0	52.009	В	7	0.77	0.877	342.0	61.024
Α	8	0.63	0.794	341.0	55.164	В	8	0.88	0.938	342.0	65.237
Α	9	0.68	0.825	341.0	57.311	В	9	1.00	1.000	342.0	69.543
Α	10	0.84	0.917	341.0	63.698	В	10	1.10	1.049	342.0	72.937
Α	11	0.89	0.943	341.0	65.566	В	11	1.00	1.000	342.0	69.543
Α	12	0.83	0.911	340.0	63.278	В	12	1.00	1.000	342.0	69.543

Test Parameters					
P _{bar} - Barometric pressure, inches Hg	29.05	% CO ₂	13.85		
P _g - Stack Pressure, inches of H₂O	0.20	% O ₂	5.35		
P _s - Absolute stack pressure, inches Hg	29.06	% N ₂	80.80		
t _s - Average stack temperature, ⁰F	341.2	Md - dry basis lb/lb mole	30.43		
Shape of Duct: (C or R)	С	Ms - wet basis lb/lb mole	29.42		
Stack Diameter, Feet	9				
	0				
Y	0	Bws - Moisture content f	raction	0.081	
Cross Sectional Area of Stack, Ft ²	63.62	Moisture determined by wi	o/db (Y or N)	N	
Method 2 Results					
Average DP	0.6988	Q - ACFM	219,835		
Average Sqrt DP	0.8286	Qsd - DSCFM	129,332		
Average Velocity Vs (ft/sec)	57.593	Qs - SCFM	140,731	12906	4
		Qs - SCFH	8,443,869	2-100	1
				Ď	SCPM

Project Number	M113908	Operating Level:	High Load
Company:	Manitowoc Public Utilities	Run No.:	Post 2/Pre 3
Plant:	Manitowoc, WI	Date:	9/29/11
Location:	Boiler B09 Outlet Duct	Start Time:	11:45
Pitot ID:	182-B	End Time:	11:56
Pitot Coefficient:	0.840	RM Testers:	ALS/rods
Probe Length:	12.0'	Port Length:	11.0"

		DP	Sqrt.	Temp	Velocity			DP	Sqrt.	Temp	Velocity
Port	Point	(in. H₂O)	DP	(°F)	(V)	Port	Point	(in. H ₂ O)	DP	(°F)	(V)
Α	1	0.72	0.849	342.0	58.961	В	1	0.55	0.742	341.0	51.500
Α	2	0.65	0.806	344.0	56.091	В	2	0.63	0.794	341.0	55.118
Α	3	0.57	0.755	344.0	52.526	В	3	0.64	0.800	341.0	55.554
Α	4	0.50	0.707	344.0	49.195	В	4	0.60	0.775	341.0	53.790
Α	5	0.52	0.721	344.0	50.170	В	5	0.57	0.755	341.0	52.428
Α	6	0.54	0.735	344.0	51.125	В	6	0.56	0.748	341.0	51.966
Α	7	0.68	0.825	344.0	57.371	В	7	0.58	0.762	342.0	52.919
Α	8	0.81	0.900	344.0	62.615	В	8	0.61	0.781	343.0	54.304
Α	9	0.90	0.949	344.0	66.002	В	9	0.63	0.794	343.0	55.187
Α	10	0.98	0.990	344.0	68.873	В	10	0.68	0.825	343.0	57.335
Α	11	1.20	1.095	344.0	76.213	В	11	0.71	0.843	343.0	58.586
Α	12	1.10	1.049	343.0	72.923	В	12	0.74	0.860	343.0	59.811

Test Parameters					
P _{bar} - Barometric pressure, inches Hg	29.05	% CO ₂	13.95		
P _g - Stack Pressure, inches of H₂O	0.20	% O ₂	5.25		
P _s - Absolute stack pressure, inches Hg	29.06	% N ₂	80.80		
t _s - Average stack temperature, ⁰F	342.8	Md - dry basis lb/lb mole	30.44		
Shape of Duct: (C or R)	С	Ms - wet basis lb/lb mole	29.47		
Stack Diameter, Feet	9				
	0				
Y	0	Bws - Moisture content f	raction	0.078	
Cross Sectional Area of Stack, Ft ²	63.62	Moisture determined by wi	o/db (Y or N)	N	
Method 2 Results					
Average DP	0.6946	Q - ACFM	219,563		
Average Sqrt DP	0.8274	Qsd - DSCFM	129,331		
Average Velocity Vs (ft/sec)	57.522	Qs - SCFM	140,272		
		Qs - SCFH	8,416,347	129	332
				, ,	DSCFM

Project Number	M113908	Operating Level:	High Load
Company:	Manitowoc Public Utilities	Run No.:	Post 3
Plant:	Manitowoc, WI	Date:	9/29/11
Location:	Boiler B09 Outlet Duct	Start Time:	13:43
Pitot ID:	182-B	End Time:	13:54
Pitot Coefficient:	0.840	RM Testers:	ALS/rods
Probe Length:	12.0'	Port Length:	11.0"

		DP	Sqrt.	Temp	Velocity			DP	Sqrt.	Temp	Velocity
Port	Point	(in. H₂O)	DP	(°F)	(V)	Port F	Point	(in. H₂O)	DP	(°F)	(V)
Α	1	0.55	0.742	342.0	51.519	В	1	0.46	0.678	344.0	47.174
Α	2	0.59	0.768	342.0	53.359	В	2	0.53	0.728	344.0	50.637
Α	3	0.66	0.812	342.0	56.436	В	3	0.52	0.721	344.0	50.157
Α	4	0.64	0.800	342.0	55.575	В	4	0.53	0.728	344.0	50.637
Α	5	0.60	0.775	342.0	53.810	В	5	0.55	0.742	344.0	51.583
Α	6	0.61	0.781	342.0	54.256	В	6	0.63	0.794	344.0	55.207
Α	7	0.59	0.768	343.0	53.393	В	7	0.79	0.889	344.0	61.822
Α	8	0.58	0.762	343.0	52.938	В	8	0.89	0.943	344.0	65.618
Α	9	0.66	0.812	344.0	56.507	В	9	0.92	0.959	344.0	66.715
Α	10	0.79	0.889	344.0	61.822	В	10	0.76	0.872	344.0	60.636
Α	11	0.95	0.975	344.0	67.794	В	11	1.00	1.000	344.0	69.555
Α	12	1.00	1.000	343.0	69.511	В	12	1.00	1.000	344.0	69.555

Test Parameters				
P _{bar} - Barometric pressure, inches Hg	29.05	% CO ₂	14.20	
P _g - Stack Pressure, inches of H ₂ O	0.20	% O ₂	5.00	
P _s - Absolute stack pressure, inches Hg	29.06	% N ₂	80.80	
t _s - Average stack temperature, °F	343.4	Md - dry basis lb/lb mole	30.47	
Shape of Duct: (C or R)	С	Ms - wet basis lb/lb mole	29.49	
Stack Diameter, Feet	9			
	0			
	0	Bws - Moisture content for	raction	0.079
Cross Sectional Area of Stack, Ft ²	63.62	Moisture determined by wh	o/db (Y or N)	N
Method 2 Results				
Average DP	0.7000	Q - ACFM	220,464	
Average Sqrt DP	0.8307	Qsd - DSCFM	129,633	
Average Velocity Vs (ft/sec)	57.758	Qs - SCFM	140,753	
		Qs - SCFH	8,445,172	,

179 487 129 487 DSCFM

METHOD 4 MOISTURE DETERMINATION

			······		
Project Number:	M113908		Run Number:	1	
Client:	Manitowoc P	ublic Utilities	Condition:	High Load	
Plant:	Manitowoc, V		Time:	Start- 8:40	End- 9:40
Location:	Boiler B09 O		Data Taken By:	ALS	2.1.4 0.10
Pressure, Ba	rometric(Hg"):	29.05	Meter Calibration (Y): 1.015	
Delta H:		0.030	Meter Delta H (dH)		
Meter Initial \	/olume:	6.690	Initial Wt:	221.9	
Meter Final V	olume:	13.834	Final Wt:	225.2	
Meter Tempe	rature:	66.08	Initial Volume:	200.0	
Meter Volume	e dscf:	7.067	Final Volume:	210.0	
		Wa	ter Vapor in Flue Gas	(Bws): 0.081	
Project Number:	M113908		Run Number:	2	
Client:	Manitowoc P	ublic Utilities	Condition:	High Load	
Plant:	Manitowoc, V	VI	Time:	Start- 10:40	End- 11:40
Location:	Boiler B09 O		Data Taken By:	ALS	L
	201101 200 0	anor Basi	Duta Fullon Dyi	ALC	
Pressure, Ba	rometric(Hg"):	29.05	Meter Calibration (Y): 1.015	
Delta H:	(3)	0.030	Meter Delta H (dH)		
Meter Initial \	/olume:	4.308	Initial Wt:	224.0	
Meter Final V	olume:	10.351	Final Wt:	226.6	
Meter Tempe	rature:	71.40	Initial Volume:	200.0	
Meter Volume		5.918	Final Volume:	208.0	
			ter Vapor in Flue Gas	(Bws): 0.078	
				<u> </u>	
Project Number:	M113908		Run Number:	3	
Client:	Manitowoc Po	ublic Utilities	Condition:	High Load	
Plant:	Manitowoc, V	VI	Time:	Start- 12:25	End- 13:25
Location:	Boiler B09 Ou	utlet Duct	Data Taken By:	ALS	
Pressure. Bai	rometric(Hg"):	29.05	Meter Calibration (Y): 1.015	
Delta H:		0.030	Meter Delta H (dH):	•	
Meter Initial V	/olume:	1.331	Initial Wt:	208.5	
Meter Final V		7.399	Final Wt:	211.3	
Meter Temper		70.00	Initial Volume:	200.0	
Meter Volume		5.958	Final Volume:	208.0	
			ter Vapor in Flue Gas		

MOSTARDI PLATT

Procedures for Calibration

Nozzles

The nozzles are measured according to Method 5, Section 5.1

Dry Gas Meters

The test meters are calibrated according to Method 5, Section 5.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.

Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to the specification described and illustrated in the *Code of Federal Regulations*, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 4; and the pitot tube assemblies are in compliance with specifications in the same section.

Client: Manitowoc Public Utilities Facility: Manitowoc Generating Station Project #: M113908

Test Location: Boiler B09 Outlet Duct Date: 9/28/11 Operator: A. L. Sorce

Calibration Gases

Type S	Setting	Cylinder ID	Cylinder Value	Analyzer	Difference, % of	Expiration	Final Bottle	Mid cylinder % of
Type	Setting Cylinder ID Cyr		Cymidel Value	Response	Span	Date	Pressure, PSI	high cylinder
	Zero		0	0.00	0.00%			
CO2%	Mid	CC122847	11.97	12.00	-0.15%	4/5/2014		61.42%
	High	CC20740	19.49	19.50	-0.05%	9/8/2012		
	Zero		0	0.00	0.00%			
O2%	Mid	CC122847	9.98	10.00	-0.09%	4/5/2014		45.22%
	High	SG9168042BAL	22.07	22.15	-0.36%	3/2/2014		

Analyzer Data

Type	Model/Serial #
CO2 %	01440D1/3791
O2 %	01440D1/3791

CO2 % Correction Data

					CO2 %	Correcti	on Data						
Run #	Cma	Precal	Postcal	Pre zero	Post zero	Co	Cm	С	Cgas	Span Bias	Span Drift	Zero Bias	Zero Drift
1	11.97	12.00	12.10	0.10	0.10	0.10	12.05	14.10	14.0	-0.51	0.51	-0.51	0.00
2	11.97	12.10	12.10	0.10	0.10	0.10	12.10	13.90	13.8	-0.51	0.00	-0.51	0.00
3	11.97	12.10	12.10	0.10	0.10	0.10	12.10	14.20	14.1	-0.51	0.00	-0.51	0.00

O2 % Correction Data

					,,								
Run #	Cma	Precal	Postcal	Pre zero	Post zero	Co	Cm	C	Cgas	Span Bias	Span Drift	Zero Bias	Zero Drift
1	9.98	10.00	10.20	0.10	0.10	0.10	10.10	5.40	5.3	-0.91	1.03	-0.51	0.00
2	9.98	10.20	10.20	0.10	0.10	0.10	10.20	5.70	5.5	-0.91	0.00	-0.51	0.00
3	9.98	10.20	10.20	0.10	0.10	0.10	10.20	5.40	5.2	-0.91	0.00	-0.51	0.00

Mostardi Platt ICR M5B/OTM28 2/2/10

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Airgas Specially Gasos 12722 S. Wentworth Avenue Chicago, IL 60628 (773) 785-3000 Ext. 13 Fax: (773) 785http://www.airgas.com

Part Number:

E03NI78E15A1066

A " I V I

Reference Number: 54-124259698-3

Cylinder Number:

CC122847

Cylinder Volume:

151 Cu.Ft.

Laboratory:

ASG - Chicago - IL

Cylinder Pressure: 2

2015 PSIG

Analysis Date:

Apr 05, 2011

Valve Outlet:

590

Alialysis bate. Api 00, 20

Expiration Date: Apr 05, 2014

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 98%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

		ANA	LYTICAL RESUI		Transfer de la company de la c
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty
CARBON DIO	XIDE	10,00 %	9.989 %	G1	+/- 1% NIST Traceable
OXYGEN		12,00 %	11.97 %	G1	+/- 1% NIST Traceable
NITROGEN		Balance			
		CALIB	RATION STANDA	ARDS	•
Туре	Lot ID	Cylinder No	Concentration		Expiration Date
NTRM/O2	06120209	CC195591	20,9% OXYGEN/NITRO	GEN	Dec 01, 2016
NTRM/CO2	97051012	SG9112972BAL	10.818% CARBON DIO	XIDE/NITROGEN	May 15, 2012
		ANAL	YTICAL EQUIPM	ENT	
Instrument/I	Vlake/Model		Analytical Principle		Last Multipoint Calibration
(CO2-1)HORIE	3A VIA-510	CONTRACTOR OF THE PROPERTY OF	NDIR		Apr 03, 2011
(O2-1)HORIBA	NPA-510		Paramagnetic		Mar 10, 2011

Triad Data Avaijable Upon Request

Notes:

Approved for Release

Page 1 of 54-124259698-3

Allvas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Airgas Speciality Gases 12722 S. Wentworth Avenue Chicago, IL 60628 1-773-785-3000

FAX: 1-773-785-1928 * www.airgas.com

Part Number:

E02NI80E15ACMD7

Reference Number: 54-124190567-1

Cylinder Number:

CC20740

Cylinder Volume:

156 Cu.Ft.

Laboratory:

ASG - Chicago - IL

Cylinder Pressure:

2015 PSIG

Analysis Date:

Sep 08, 2009

Valve Outlet;

580

Expiration Date: Sep 08, 2012

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Component		Reque Conce	ANALYTICAL RE ested Actual entration Concentrati	Protoc	
CARBON DIO NITROGEN	XIDE	19.50 % Balance		G1 :	#/-1% NIST Traceable
Туре	Lot ID	Cylinder No	CALIBRATION STA	NDARDS	Expiration Date
NTRM/CO2	40604 Make/Model	XC034327B	19.84% CARBON DIOXIL ANALYTICAL, EQU Analytical Principle		May 15, 2012 Last Multipoint Calibration
HORIBA 510	nanomous.		NDIR		Aug 21, 2009

Triad Data Available Upon Request

Notes:

QA Approval

Page 1 of 54-124190567-1

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Alrgas Specially Gasos 12722 S. Wentworth Avenue Chicago, IL 66628 (773) 785-3900 Ext. 13 Fax: (773) 78! http://www.airgas.com

Part Number:

E02NI78E15A0124

Reference Number:

54-124255256-7

Cylinder Number:

SG9168042BAL

Cylinder Volume:

146 Cu.Ft.

Laboratory:

ASG - Chicago - IL

Cylinder Pressure: Valve Outlet:

2015 PSIG 590

Analysis Date: Mar 02, 2011

Expiration Date: Mar 02, 2014

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Componen	t	Regues Concer	sted ntration	Actual Concentration	Protocol Method	Total Relative Uncertainty
OXYGEN NITROGEN		22,00 % - Balance		22.06 %	-G1	+/- 1% rtiST Traceable
Туре	Lot ID	C Cylinder No		ATION STANDA	RDS	Expiration Date
NTRM/O2	06060810	CC206131		OXYGEN/NITROGEN	₹NT	May 01, 2016
Instrument	/Make/Model	1		tical Principle	34 1	Last Multipoint Calibration
(O2-1)HORIB	A MPA-510		Parama	ignetic		Feb 10, 2011

Triad Data Available Upon Request

Notes:

Approved for Release

Page 1 of 54-124255256-7

September 12, 2011	RichS	29.47
Date:	Calibrated By:	Barometric Pressure:
CM11	16541852	1.0005
Dry Gas Meter No.	Standard Meter No.	Standard Meter (Y)

Stack Temperature Sensor Calibration

Meter Box #:

CM11

Name:

RichS

Ambient Temperature :

81 ٥F Date:

September 12, 2011

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: September 22, 2006

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference	Test	
Source	Thermometer	Temperature
Temperature (° F)	Temperature (° F)	Difference %
0	-2	0.4
250	247	0.4
600	596	0.4
1200	1198	0.1

(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) * $_{100} <= 1.5$ % Ref. Temp., °F + 460

Dry Gas Meter No.
Standard Meter No.
Standard Meter (Y)

CM11 16541852 1.0005

Date:

Calibrated By: Barometric Pressure:

October 12, 2011 BRS 29.47

	Orifice	Standard Meter	Dry Gas Meter	Dry Gas Meter Standard Meter Dry Gas Meter Dry Gas Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter				
	Setting in H ₂ O	Gas Volume	Gas Volume	Temp. F°	Inlet Temp. F°	Outlet Temp. F°		Time	Time		
Run Number	Chg (H)	Vr	ρΛ	tr	tdi	tdo	td	Min	Sec	>	Chg (H)
)_								
Final		34.990	13.960	99	69	89					
Initial		29.535	8.465	99	89	89					
Difference 1	0.20	2575	5.495	99	69	89	89	19	0	0.996	1.366
Final		40.957	19.965	99	02	69					
Initial		35.249	14.218	99	69	69					
Difference 2	2 0.50	2.708	5.747	99	02	69	69	13	19	0.998	1.529
Final		47.255	26.265	99	20	69					
Initial		099'17	20.647	99	02	69					
Difference 3	3 0.70	269.9	5.618	99	02	69	20	10	59	1.001	1.515
Final		53.644	32.680	99	02	69					
Initial		47.752	26.760	99	02	02					
Difference 4	4 0.90	5.892	5.920	99	0.2	20	20	10	9	1.000	1.485
Final		61.054	40.121	99	02	69					
Initial		54.122	33.153	99	02	02	N				
Difference 5	5 1.20	6.932	6.968	99	02	02	70	10	44	0.999	1.615
Final		29.309	8.245	99	89	89					
Initial	•	23.823	2.770	99	29	29					
Difference	6 2.00	5.486	5.475	99	89	89	89	9	48	1.000	1.733

Average 0.999 1.541

Stack Temperature Sensor Calibration

Meter Box #:

CM11

Name:

BRS

Ambient Temperature :

81 ° F

Date:

October 12, 2011

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: September 22, 2006

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

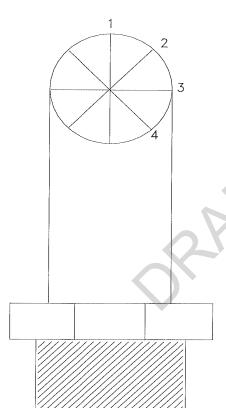
Reference	Test	
Source	Thermometer	Temperature
Temperature (° F)	Temperature (° F)	Difference %
0	-2	0.4
250	247	0.4
600	596	0.4
1200	1198	0.1

(Ref. Temp., ${}^{\circ}F + 460$) - (Test Therm. Temp., ${}^{\circ}F + 460$) * ${}^{100} <= 1.5 \%$ Ref. Temp., °F + 460

Platt Environmental Services, Inc.

1520 Kensington Road, Suite 204 Oak Brook, IL 60523-2141 630-521-9400 630-521-9494 fax

Nozzle Calibration Sheet Teflon Set #5


Nominal Diameter	.120	.175	.200	.230	.250	.275	.300	.310	.375	.500	Other
Nozzle Diameter	.122	.179	.208	.231	.266	.276	.305	.313	.361	.475	
Nozzle Identification Number	4		7	8	#9	9	10	12		#16	

Nozzle Calibration

Date: 8/23/2011

Nozzle ID No.: T-40

Analyst: SD

 0.305
 1

 0.305
 2

 0.305
 3

 0.305
 4

Average 0.305

Pitot Tube No:	176	Date:	9/8/2011	Inspectors Name:	<u>B</u> WH
}		A		LONGITUDINAL B PLOW	
	LONGITUDINAL DI TUBE AXIS DI 0.48 CM <0, <0.93 (3/16 IN.) (3/8 IN	A-SIDE PLANE A PA B PA B S CM B-SIDE PLANE	NOTE: [1.05 $0_1 < P_1 < 1.50 D$ $P_A = P_B$	B FLOW	
	}¥	TRANSVERSE TUBE AXIS	FACE RENING- ANES		- - -
	TRANS TUBE	IVERSE AXIS	X B	DA W	
Pitot tube assembly l	evel? <u>x</u>	_yesno			
Pitot tube openings of	lamaged?	yes (explain l	below) <u>x</u>	no	
a ₁ = 3	° (<10°), a ₂ =	° (<10°)	z = A sin g	= <u>0.039</u> (in.); (<0.125 in	ı.)
b ₁ =0	$^{\circ}$ (<5°), $b_2 =$	3 ° (<5°)	w = A sin q	= <u>0.000</u> (in.); (<0.03125	in.)
γ =2	ο, θ= 0	°,A = 1.120 (in.)	P _A = 0.56	$\frac{60}{100}$ (in.), $P_B = \frac{0.560}{100}$ (in.), $D_t = \frac{0.560}{100}$	= <u>0.375</u> (in.)
Calibration required?	yes	xno			

Calibration required?

Pitot Tube No:	176	Date:	10/7/2011 Ins	pectors Name:	<u>R</u> JG
<u>y</u> <u>8</u>	<u> </u>		LONG TUB	TUDINAL B FLOW	
-	LONGITUDINAL DI A TUBE AXIS B	P _B NO	ie: 5 η<Ρ, <1.50 D P _A = P _B	B FLOW	
		TRANSVERSE TUBE AXIS FACE OPENING PLANES		β β2 β2 β1 β2 β2 β2 β2 β	
	TRANSVERSE THAT AND THE	A 3		w w	
Pitot tube assembly le	evel?xyes	no			
Pitot tube openings da	amaged?	yes (explain below	v) <u>x</u> no		
a ₁ =1 °	$(<10^{\circ}), a_2 = 1$	° (<10°)	z = A sin g =	0.019 (in.); (<0.125 in.)	
b ₁ =0	(<5°), b ₂ = 1	° (<5°)	w = A sin q =	0.019 (in.); (<0.03125 in.)
_γ = 1 °	, θ= 1 °,Α=	1.080 (in.)	$P_A = 0.540$ (in.), P _B = 0.540 (in.), D _t =	0.375 (in.

Pitot Tube No: 179 Date: 8/4/2011 Inspectors Name: KRA

A—SIDE PLANE

LONGITUDINAL B r.Low
AB FLOW
A

B

CONDITUDINAL B FLOW
A

A

B

CONDITUDINAL B FLOW
A

A

A

B

CONDITUDINAL B FLOW
A

A

A

B

CONDITUDINAL B FLOW
A

B

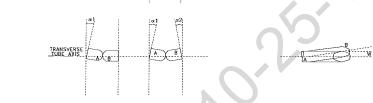
CONDITUDINAL B FLOW
A

A

B

CONDITUDINAL B FLOW
A

B


CONDITUDINAL B FLOW
A

A

B

CONDITUDINAL B FLOW
A

B

Pitot tube assembly level? ____ yes _____no

Pitot tube openings damaged? ______yes (explain below) _____ no

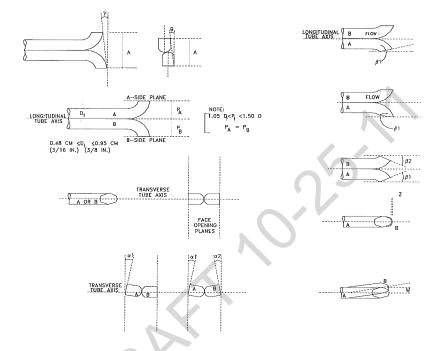
$$a_1 = 0 \circ (<10^\circ), \quad a_2 = 0.5 \circ (<10^\circ)$$
 $z = A \sin g = 0.020 (in.); (<0.125 in.)$ $b_1 = 0 \circ (<5^\circ), \quad b_2 = 3 \circ (<5^\circ)$ $w = A \sin q = 0.020 (in.); (<0.03125 in.)$

$$\gamma = 10^{\circ}$$
, $\theta = 10^{\circ}$, $A = 1.136_{\circ}$ (in.) $P_{A} = 0.561_{\circ}$ (in.), $P_{B} = 0.561_{\circ}$ (in.), $P_{C} = 0.375_{\circ}$ (in.)

Calibration required? _____yes ___x __no

1.128 (in.)

Calibration required?


 $w = A \sin q =$

0.020 (in.); (<0.03125 in.)

 $P_A = 0.564$ (in.), $P_B = 0.564$ (in.), $D_t = 0.375$ (in.)

S TYPE PITOT TUBE INSPECTION WORKSHEET

 Pitot Tube No:
 182
 Date:
 9/14/2011
 Inspectors Name:
 KRA

Pitot tube assembly level?

_____ yes _____no

Pitot tube openings damaged?

___ yes (explain below) ___ x__ no

$$a_1 = 0.5^{\circ} (<10^{\circ}),$$

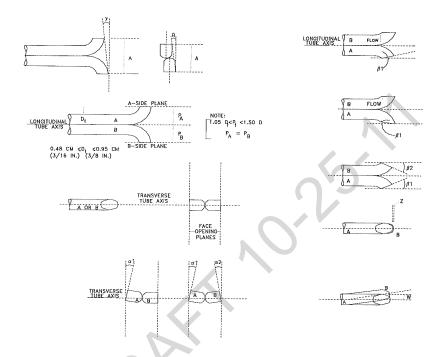
$$a_2 = 3 o (<10^\circ)$$

$$z = A \sin g = 0.009 \text{ (in.); (<0.125 in.)}$$

$$b_1 = 3 \circ (<5^\circ),$$

$$b_2 = 1.5$$
 ° (<5°)

$$w = A \sin q = \frac{0.019}{(in.)}; (<0.03125 in.)$$


$$\gamma = 0.5$$
°, $\theta = 1$ °, $A = 1.073$ (in.)

$$P_A = 0.536$$
 (in.), $P_B = 0.537$ (in.), $D_t = 0.375$ (in.)

Calibration required? _____yes ___x __no

S TYPE PITOT TUBE INSPECTION WORKSHEET

Pitot Tube No: 182 Date: ____10/13/2011 Inspectors Name: SD

Pitot tube assembly level?

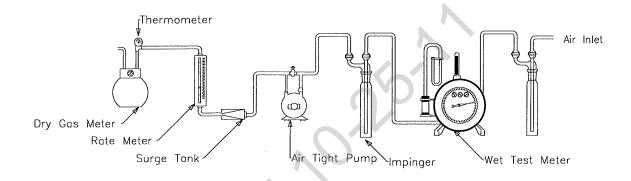
Pitot tube openings damaged?

$$a_1 = 2^{\circ} (<10^{\circ}),$$

$$a_2 = 3 ^{\circ} (<10^{\circ})$$

$$z = A \sin g = 0.000$$
 (in.); (<0.125 in.)

$$b_1 = 3.5^{\circ} (<5^{\circ}),$$


$$b_2 = 2$$
 ° (<5°)

$$w = A \sin q = \frac{0.019}{(in.)}$$
 (in.); (<0.03125 in.)

$$P_A = 0.534$$
 (in.), $P_B = 0.533$ (in.), $D_t = 0.375$ (in.)

Calibration required?

Dry Gas Meter Calibration Sample Train Diagram

Project Number:	M 113908	Date:	09-27-11
Client:	MANITOWOC Public Ut	Test Number:	PRE FEST NULL PY
Test Location:	BOWER 9 Outlet D	Start Time:	1453
Source Condition:	Normal Goad	End Time:	1512
Test Engineer:	ALSORCE	Test Tech:	Red Sellors
Flue Area <u>63</u>	.617 ft ² D	pstream Disturbance, Diameters ownstream Disturbance, Diamete	rs
Port Length /	<u>в.о</u> " Р	itot ID /76 A Pitot Coefficient (C	
P _{bar} 27.15 "H		Wet Bulb Temp 136	Leak Checks
Static <u>~ /. ০০</u> "⊦	1 ₂ O O ₂ % <u>5 2</u>	Dry Bulb Temp	Pre _ + 4
Static'	'Hg N₂% <u>80,8</u>	Bws 10102	Post _ + 1
P _s "Ho	g Meter No. <u>Cm-</u> //	,	

Port-Point #	ΔΡ	Temp. ℉	$\sqrt{\Delta P}$	Null Point Angle, Degrees	Port-Point #	ΔΡ	Temp.	$\sqrt{\Delta P}$	Null Point Angle, Degrees
A-1.	0.25	328		0	B-1	0.18	328		0
2-	0.26	328		12	2	0.26	328		12 10
3	0.26	328		15	3	0.29	329		15
4	0.24	329		18	4	0.19	329		17
5	0.21	329		19	5	0.18	330		0
6	0.23	329		14	6	0.14	330		6
7	0.22	329		9	7	0.13	330		5
8	0.19	328		2_ (8	0.10	339		2
				<i>-</i> /					
									,
									142/16
									/
									9.8%
									Pass
									, -
Average					,				

Sokinetic Sampling Cover Sheet Test Engineer: A. L. S GREET Test Technician: ROD SOLLARS

Plant Information	Vame: /		Pitot Coefficient: 0.84つ Train Type: Nozzle Diameter: 0.305 Filter Number/Weigl	I I I I	Traverse Data		송	
-------------------	---------	--	---	------------------	---------------	--	---	--

Servomex Serial #:

\$\alpha | \lambda \cdot \in \text{Method 3 of Method 3A} \\ \alpha | \lambda \cdot \in \text{Nolume or Weight Gain; } \mathcal{Imp. Volume or Weight Gain; } \mathcal{Imp. Volume or Weight Gain; } \alpha \cdot \in \text{So.} \cdot \in \text{Silica Weight Gain; } \mathcal{Imp. Volume or Weight Gain; } \mathcal{ 33 2 Post-Test Nozzle Verification: Final Imp. Volume or Weight: Final Silica Weight: Imp and/or silica balance Model and S/N: Initial Imn Volume or Weight: Initial Imp. Volume or Weight:

Comments:

Isokinetic Sampling Field Data Sheet

] ω				Impinger Outlet Well	Temp %F	27	26	200	0	200	7	20	57	2,00	50	20			12	120	200	54	42	2	5	27	60	60	50.	00				
\	Test Tech: Red	-			Filter Temp. °F		057	120	2000	255	250	250	250	250	250	250	250			250	750	750	250	250	250	250	250	250	250	250	250				
	425 Test				Probe Temp. 야		270	2000	242	320	330	330	0 0	250	330	23.0	330			330	330	330	330	330	330	64 64 0	330	330	330	330	330				
	7				um,		9 1	0	0 0	7	5.0	0-9	5,0	7.0	7.0	09 0	00			0,0	ò	0.7	0.0	0.0	6.0	0	0	ê Ô	0	0.	0,				
nber:	Ľ	ımber:		Meter	Temp Outlet,	L	79	16	27.	22	63	63	n	64	64	70	43			est	65	65	.57	65	99	2	2	67	67	eg V	00				
Test Number:	Operator:	Page Number:		,	Meter Temp	miet, r	i o	10/	2 2	000	69	70	1/	1/	17	77	72			72	83	63	70	71	72	4/	75	75	75	.75	76				
	Da+1+			14.6	Stack Temp,	-	040	5 42	14%	34	34	34	342	342	342	342	342			341	341	34	341	14%	34	140	34	345	347	727	. 342				
1-82-60	BOILER 9	ch - 027		Theoretical	Volume, (V _m) ft³,	total	7477	70000	22.852	24.80.19	27.040	29.304	32.188	34.494	37.604	40.714	43.713	46.823			49 388	51.953	54.526	57.082				- 1	70.600	73.862	6	79.839	-		
	ation:	:pou		$\frac{\times Z}{\times} \le$ Theoretical Meter	Volume, (V _m) ff ³ ,per	point 7 9.11	0000	2 4 - 2	1:967	2.221	2.264	2.804	2.306.		3,770	2.999	2.70			2.565	2.5765	2.583	2.546	2.507	2.449	10000	2.650	0//0	.26	` I	2.867				
Date:	Test Location:	Test Method:	T	7.244 Meter Rate.	Subic Feet/	1.423	1701	0.987	737.0	e. 808.	OI	1.154	525.0	1.244	1.244	1.200	1.244			1.02	1.056	1.033	6.0%	1.00 %	0.700	1,01	04/1/	477.	505.	1.244	1.147				
	12 T				Square Root,	1000	010	0.794	0.632	411.0	- 6	0.927	0.742	1.000	1.000	495-0	1.000			0.825	0.825	60 00	0 0	0.800	0.787	000	111:0	000.	1.049	000.	0.922				
000	215	OUGO		Meter	Volume (V _m) ft³,	14 979	17:73	20.4/	75.67	24.84.	27.00	29.35	32.2	34.53	57.6/	20.04	wil	46.871			49.47	51.98	なが	10.10	57.6/	64.00	64:50	10/1	10:60	15.19	16.73	19.844			
M 11390	MRWITOWOS PUR	MANITOWOC			_	ļ	3.17	2.77	1.76	57.7	25.23	5/1.5	ルナル	4.7	4 40	4.0.4	04.40		Š	55.2		. 1	200	2000	200	00000	27.0	0 - 4	1007	01.40	0.70				
umber:					(a)	20.00	0.72	6. 62	0.40	15.0	0 23	00.1	٨٨.	00:	0000	56.0	000			00	0.08	0.60	9 ,	200	1000			000	5/:/	0000	0.00		-		
Project Number:	Client:	Plant:		Con y	Ë	/130	1132.5	1135	1137.5	1/40	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	100	キンナニ	- 1	1/22.5	1.55	1.57.5	007/	1.57	12/0	5.2/7/	5/2/	1411.5	1220		1207	1230	1720 6	1,06.0	525	5.752	1240			
•					Port-	4-1	N	m	4	7	1 6	0	0 0		0		N		(-10	130	N 3	1) ~	7 0.	ai.) 6	Ö		. I	1				

PLATT ENVIRONMENTAL SERVICES INC.

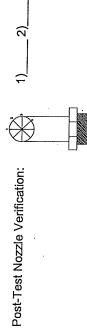
IMPINGER WEIGHT SHEET

PLANT: MANITOWOC		
UNIT NO: BOILER 9		
LOCATION: CHILET DUCT		
DATE:		
TEST NO:	Coz.	14,0
METHOD: Am - 02-7	02	14.0
WEIGHED/MEASURED BY: ALS		
BALANCE ID: \$10 - 19	O_{λ}	

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER		IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN		CONTENTS
1					
IMPINGER 1	776.3	724.8	51.5		100 ml 0.1N H2 SO4
100	T T				
IMPINGER 2	751.6	736.6	15.0		100, 1 0. IN H2504
	1 -				
IMPINGER 3	602.2	592.6	9,6		BLANK
DOMESTIC CONTRACTOR					
IMPINGER 4			4(76:1)		ı
	THE WEST OF		1000		
IMPINGER 5	817.0	796.2	20.8		SILICA
		Two to			
IMPINGER 6	ļ.				
			, 		
IMPINGER 7				Ü.	
7		and the second second	ant i		
IMPINGER 8			96.9		

FINAL TOTAL	INITIAL TOTAL	TOTAL GAIN
I INAL IOTAL	INTIAL TOTAL	IUIAL GAIN

Isokinetic Sampling Cover Sheet Test Engineer: ペルンテルル


KOD 501LARS

Plant Information		Client Name: //	ular	Upstream Dia	35/	Source Condition: Hotely Loko	Meter and Probe Data	VI Volue	O Q A Train Time	Tall Type:	1	Probe Liner: 62.455 Thimble Number/Weight:	K: 0 00 Z- 10 10 0 "Hq Post-Test Nozzle leak Cherk" 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H D D T T T T T T T T T T T T T T T T T	
	7	Boston 9 Outlet	Ĕ	- 1	FLANGE	atm-02-1	,	CM-11	D-601	一人作 いっこうりん	3000	11:01	ار		
•	Run Number:	Test Location:	Duct Shape:	Fiue Area:	Toot Mother.	est Method:		Meter ID:	Pitot ID:	Nozzle Kit ID	140.	Frone Length:	Pre-lest Nozz	Pre-Test Pitot Leak Check:	

Traverse Data		Total Test Time: 60 Sample Plane: Horizontal or Vertical	(ROTH)	
	Ports Sampled: 2	l otal Points: 24		

Stack Parameters	Barometric Pressure: 29.09 Static Pressure: + 0.20" 120	CO ₂ %: / Avg. /3 % O ₂ %: / Avg	Servomey Serial #:	Initial Imp. Volume or Weight:	Initial Silica Weight: 8// Final Silica Weight: Same of Weight Cair.	
------------------	---	--	--------------------	--------------------------------	--	--

Comments:

3

Isokinetic Sampling Field Data Sheet

[4]	Impinger Outlet Well	lemp r	47	45	12	4.	4	40	200	i w	27	12			57	53	54	35	25	95	25	57	57	00	α					
2 Test Tech: Roo	Filter Temp. °F	250	250	256	250	2.50	17.00	0 57	250	250	250	052			250	250	250	250	250	250	252	250	250	250	253	250				
	Probe Temp. °F	22	320	320	25	W 1	240	0,20	3,5	320	320	320			328	320	320	320	320	320	320	320	320	350	320	328				
	Pump Vacuum, " Ho	40	0.4	9	2	9	0 4	2,0	6.0	6.0	7.0	7.0			5,0	4.0	4.0	4.0	4.0	0,4	0.4	0,0	6.0	0.7	100	5.0				
ımber: ır: umber:	Meter Temp Outlet,	62	52	65.	5	65	9 /	9 9	29	67	67	77			00	.00	e	25	99	99	66	9	e	10	77	19				
Test Number: -Operator: Page Number:	Meter Temp Inlet. °F	6.	89	69	10	1200	72	14	74	44	7	74			89	69	70	11	77	72	72	1/3	72	12	.72	73		,		
let Duct	Stack Temp,		y.	341	341	341	142	77	342	342	342	342			340	340	341	34/	341		1_	- 1	- 1	- 1		341				
09/28/1/ er 9 Outlet ctm - 027	Theoretical Meter Volume, (V _m) ft ³ , fotal		82.922	85.044	000 M	92 515	660.76	108.80	101.690	104.822	08.020	1111,250	114.480			117.486	119.815	122.275	124.559	126.602	100.886	151.175	134.75%	127.988	141.218	144.448	147.546			
100	×2.5 Theoretical Meter Volume, (Vm) ft³, per	2.702	2.722	2.664	2.64	2.042		1 .	3.132	3. 69 8	1	3.230	ì		797.2	2.329	2.460	7.784	2.043	14.700	70/ 7	3.65	6.0.0	3.730		5.098				
Date: Test Location: Test Method:	0d 0	106n	1.089	1.065	570.	1.034	1.081	1.156	(.253	1.279	(.292	7.52.1			611.7	0.932	7000	4.6	1000	11.0	0,10	0 1	7/2/	767	.292	1.239			\dagger	
	Square Root,		0.843	278.0	0.875	0.800	0.837	468.0			-	0000			_	0.721		0.707	1 6	0 0	0000	0000	9517	0000	_	6.959				
8000 1321 1221	Meter Volume (V _m) ff³, Actual	2 2	- 1	005.66	- 1	02.40	1	1 1		120.40	107.98	111.17	114.47		14.685	17.45			121, 17	10001	1	1	130.57	120.01		144.46	147.541			
Waritowoc Manitowoc	Λ, 659 Orifice Setting	200	200	3,7	000	7 2 6	3.75	3.73	4.38	4.57	4.66	4.66		,	2,40	2,47	2.70	12.20 10.20	1.00	277	447	7	200	4.60	4.00	4.20				
Project Number: Client: Plant:	(4 <u>A</u>)	0.70	0.7/	000	9 0	0 0 0	0.70	08.0	0.	0.78	1.00	00',		1	0 2		0.00	2 v 4	5 7	0 0	+	6	0 0		0	72.0				
Project N Client: Plant:	Пяе	1345	1347.5	1250	12EC	1357.5	1400	1402.5	18 0 V	407.5		14/2.5	11/2	-//	1750	(1) (F) (F)	1 200	1440	1 44	1447	1447	1450	1707	11/1/10	100	C./CL/	0000			
	Port- Point #.	1-8	40	24	- l,	9	7	00	δ.	9		1		e	200	10	v) 4	1	1	0 0	+-	1	\dagger	+	\top	777				

PLATT ENVIRONMENTAL SERVICES INC.

IMPINGER WEIGHT SHEET

PLANT: MANITOWOC	_
UNIT NO: BOILER 9	
LOCATION: QUILLET DUCT	.
DATE: 09-28-11	- CO2 13.8
TEST NO:	•
METHOD:	02 5.5
WEIGHED/MEASURED BY:	
BALANCE ID: \$ 10 - 19	

		Enconetical		-		4	
	FINAL WEIGHT		INITIAL WEIGHT		IMPINGER	0	IMPINGER
Circle One:	MLS / GRAMS	755	MLS/GRAMS		GAIN		CONTENTS
IMPINGER 1	760.2		689.2		71.0		100ml 0.1N H250A
			12 (12) (12) (12) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13) (13)		de la Carre de La		
IMPINGER 2	749,4		736.7		12.7		100m1 0,1N H250g
APPENDING							
IMPINGER 3	621,4	5	615.3		6:1		BLANK
	Talka, Landing		lead of				
IMPINGER 4					(29.8)		
	- AP 15050						
IMPINGER 5	828,5		811.7		16.8		SILICA
	14 TE						
IMPINGER 6							
IMPINGER 7							
IMPINGER 8							

		106,6
	the state of the s	The second secon
FINAL TOTAL	INITIAL TOTAL	TOTAL GAIN
	INITIAL TOTAL	I O I AL GAIR

3

Post-Test Nozzle Verification:

Isokinetic Sampling Cover Sheet Test Engineer: A, L. Sorce Test Technician: Rob Souch Res

		Plant Information
Run Number: Test Location:		ame:
Duct Shape: Flue Area:	Circularor Rectangular	Length: — Width: — or Diameter: 9.0/ Ubstream Diameters:
Port Type:	16/11	Port Length: /5.00// Port Diameter:
Test Method:	g-tm-027	
		Meter and Probe Dafa
Meter ID:	CM-11	Meter Y Value: /, 0/5 AH Value: /, 579
Pitot ID:	179-8-	0.840 Train Type:
Nozzle Kit ID	TEFLON #5	0.305 Filter Number/Weight:
Probe Length:	10.1 14	G LOSS Thimble Number/Weight
Pre-Test Nozz	K: 0.00 /	"Hg Post-Test Nozzle Le
Pre-Test Pitot Leak Check;	Leak Check: +4/+4	II.
	7	
		Traverse Data
Ports Sampled: Total Points:	24	
		(Asoth)
-		Stack Parameters
Barometric Pressure: CO ₂ %: /	issure: 29.09	Static Pressure: $\frac{7 - 20^{\prime\prime} (\frac{1}{120})}{ A \times A }$ Static Pressure: $\frac{1}{120} = \frac{1}{120} = \frac{1}$
Imp and/or silic	el and S/N:	Servomex Serial #:
Initial Imp. Volume o Initial Silica Weight:	or Weight:	Final Imp. Volume or Weight: ユララシシラ Imp. Volume or Weight Gain: <u>89.の</u> Final Silica Weight: タハウ ショ Silica Weight Gain: ハル ユ
Comments.	. ·	
3		·

-
9
œ
_
ठ
U,
63
-
77
~~
$^{\circ}$
=
୍ଦ
Ц.,
-
Ų.
⊏
==
$\overline{}$
24
=
(0
ഗ
Ç
:=
77
Ψ.
A RESIDE
¥
충
sok
Isok

	Impinger Outlet Well Temp °F	52	45	46	47	43	200	100	- or	15	52			1/5	40.	40	8	50	50	2/	52	23	20	n 4	40			
3 Test Tech: Rob	Filter Temp. °F	250	250	250	052	250	750	250	250	250	255			252	256	250	250	250	250	250	250	250	250	252	250			
3 44.5 Test	Probe Temp. °F	325	222	320	320	3,	3 6	320	320	325	328			320	320	32%	320	320	28	370	220	320	320	328	320			
	Pump Vacuum, " Hg	0,00	u w	0	4.0	4. 4 0	3 5	5.0	5,0	e i	6.9	,		4.0	6.0	4,0	4,0	4.0	0.4	4.0	4,0	2	5,0	0.0	20.			
Imber: or: umber:	Meter Temp Outlet, °F	66	200	20	19	10	9 00	800	69	63	69			70	. 70	10	70	20	10	70	>	17	12	71	11			
Test Number: Operator: Page Number:	Meter Temp Inlet, °F	10	72	73	74	2/2	7 6	76	17	11	77			24	75	75	26	11	28	00	90	69	18	19	19			
7 7 7	Stack Temp, °F	341			342	247	345	343	343	343	75			345	342	342	342	34.7	342	54.2	245	24.2	343	343	543			
09/28/11 Les 9 Outlet chn-027	Theoretical Meter Volume, (Vm) ff³, total	11/1/2	52.883	58.735	57.543	1207.021	65,047	67.818	71.018	74,218	77.574	80.774		A :	83,219	85,698	88. (77	40,731	43.247	15.716		101.164	(04. 233	104.101	110.601	113.957		
	× 2・5 Theoretical Meter Volume, (Vm) ff³,per	2 677	2.352	2.308	7.2000	2844	2.771	3 200		3.35%	2.700			2.427	7.47	2.479	2.560	1.260	4.4.7	1.500	7 600	3.064	20,00	3.700	2.256			
Date: Test Location: Test Method:	/.2%0 Meter Rate, Cubic Feet/ Min.	120/	0.941	0.922	224.0	1.138	1.109	1.280	1.280	1.34.2	7.280			275	0.77	0.99	1.04	400.	11.0	1 12 1	777	277.1	197.	021.	1.34.4		\dagger	
	Square Root, AP	0.837	1. 1	٠ ١	0.735		0.866	1.000	1,000	1.049	1.000							5 2 2		2 5	000	10000	2/2.7	3000	1.04%			
00	Meter Volume (V _m) ff³, Actual	50.42	52.83	55.25	20020	(2.2)	65.04	67.60	27,00	14, 100	25.11	20.187	1	04 40 44 A	טאיין ט	11.50	- 1	- 1			- 1	- 1	104: 4>	71.12	110.50	112.715		
M //3900		2.72	1 1	2.40		1,				5.0%	4:01		0, 7	1.68	17.7	2000	700	6 77	000	20 C	717	100	1,1	100	9 9			
Project Number: Client: Plant:	(AD)	0.00	0.54	0000	45.0	61.0	0.75	1.00	1,00	0/:/0	. 60		0,1	0 5	3 6	0 6	200	0.1.0	0 0	0.77	0.07	000	00/	001/	0//			
Project N Client: Plant:	Time	1532.5	1535	124.5 0.45	1542.5	1545	1547.5	1550	25.2.2	1020	5/26/	3	100	1, 10 %		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(を)	1870	14775		1427.5	1430		12000	200		
	Port- Point #.	2	~ ~	F 12	3	7	000		0/5	2	1		tr.	14		+	V		\top	ėσ	1	1	1.	1				

PLATT ENVIRONMENTAL SERVICES INC.

IMPINGER WEIGHT SHEET

PLANT: Manitowoc Public Util.	
UNIT NO: Boiler 9	
LOCATION: Outlet Duct	
DATE: 9/23/11	
TEST NO:	CO2 14.1
METHOD: 2+m-027	02 5.
WEIGHED/MEASURED BY: ALS	
BALANCE ID: 5/0 -/9	$\mathcal{O}_{\mathcal{O}}$

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
	Proceedings of the second			
IMPINGER 1	796.8	128.3	68.5	100m/ 0.1N/t2504
		- T		THE STATE OF STREET
IMPINGER 2	755.9	740.0	159	100m1 0,1N/42 504
Table 1	- 1			
IMPINGER 3	7,00,8	696.2	4,6	Blank
1		4.60mg 3 (2 m 2 m)		
IMPINGER 4			+ 89.0	
	-			
IMPINGER 5	810,9	796,6	14.3	Silica
	T.		1 1 1 1 1 1 1 1 1 1	
IMPINGER 6				
4	T			
IMPINGER 7				
\$1.50 mg				
IMPINGER 8			7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

		103,3
FINAL TOTAL	INITIAL TOTAL	TOTAL GAIN

DS-005A Impinger Weight Sheet

Platt Environmental Services, Inc.

H₂SO₄ VAPOR FIELD DATA SHEET Controlled Condensate (CCS) (NCASI Method 8A)

Project Number:	M 113908		Date:	09/	29/11
	TOWOR PUBLIC UTI	L171ES	Test #	:	1
	on: BOILER 9 Out		00	E 8°	14.0
	n: HIGH LOAD			2 2	5.2
Dry Gas Meter N	o. <u>Cm-11</u> Y	= 1.015	ΔH= <u>/</u> .:	579	
Barometric Press	ure: <u>29.05</u> in.	Hg Me	oisture Gain:	070	
Leak Check:	Pre-sampling 0.00	cfm @	B. O in. He	z vacui	ım

				. Temperature								
		Orifice			Filter			Dry Ga	s Meter			
Clock Time (24 hrs.)	Meter Volume (V _m) ft ³	Gauge Pressure (ΔH) in. H ₂ O	Stack (°F)	≥ 500° Probe (°F)	≥ 500° Probe (°F)	≈140° Condenser Water (°F)	Coil Exit	Inlet (°F)	Outlet (°F)	Impinger Outlet (°F)		
0840	6.690	0.03	340	560	500	141	60	4	63	63 -		
0845	7.209	0.03	340	550	500	141	90	45	63	62		
0350	7.713	0.03	340	550	500	140	90	65	63	62		
0855	8.221	0.03	340	550	500	141	91	lele	44	62		
0900	8.732	0.03	340	550	500	141	95	66	45	62		
0905	9,250	0.03	340	550	500	140	-94	67	45	62		
0910	7.764	0.03,	340	550	500	140	94	67	65	62		
6915	10.296	0.03	340	550	500	140	95	68	46	63		
0920	10.785	0.03	340	550	500	140	93	68	66	63		
0925	11.297	0.03	340	550	500	140	93	69	67	63		
0930	12,809	0.03	340	550	500	140	93	69	67	63		
0935	13.312	6.03	340	550	500	140	93	90	68	63		
0940	13.834	C "				,		,				
Avg.									(66.08)	62.5		

Operator:	A.L. SORCE	DS-010 (rev. 2/25/10)

Project Number:	m 113908	Date:	09-29-11
Client:	Manitonoc Public U	Test Number:	PRE FLOW
Test Location:	Boiler 9 Outlet)	Start Time:	0821
Source Condition:	HIGH LOAD	End Time:	0834
Test Engineer:	A.L. SORCE	Test Tech:	Rob. 5
Duct Diameter		Upstream Disturbance, Diameters	S
Flue Area _ 6	3.617 ft ²	Downstream Disturbance, Diamet	
Port Length _/	11.0 "	Pitot ID 182 - B Pitot Coefficient	(C _p) <u>0 · 84 o</u>
P _{bar} 29.05"H		Wet Bulb Temp	Leak Checks
Static + 0.20"	H_2O $O_2\%$ 5.2	Dry Bulb Temp	Pre <u>+3/+3</u>
Static 10.0/	"Hg N₂% <u>80</u> ,8	B _{ws} 0,08/	Post <u>+3/+3</u>
Ps 29.06 "H	g Meter No. <u>OM</u>	<u>~</u> //	

Port-Point #	ΔΡ	Temp. °F	$\sqrt{\Delta P}$	Null Point Angle, Degrees	Port-Point #	ΔΡ	Temp.	$\sqrt{\Delta P}$	Null Point Angle, Degrees
A = 1	0.54	3 3.6			R-1	0.18	338		
2	0.38	333			2	6.64	338		
3	0.60	337			3	0.72	339		
4	0.61	338		1	4	0.69	339		
5	0.62	339			.5	0.68	339		
Ģ	0.61	340			6	0.64	340		
7	0.61	340			7	0.63	340		
8	0.62	340		Į.	8	0.76	340		
9	0.83	340			9	0.81	340		
10	6.89	340			. 10	0.90	340		
/1	0.84	33%			. 77	0.98	350		
12	0.83	337			12	0.98	340		
		,							
			ΔV						
									•
			7						
						,			
Average									

$$.44 \times CO_{2}\% + .32 \times O_{2}\% + .28 \times N_{2}\% = _____(Md)$$

$$(_____Md \times ____1-Bws) + (18 \times ____Bws) = ____(Ms)$$

$$85.49 \times ___Cp \times \sqrt{ ___Ms \times __Ps} \times ___ \sqrt{\Delta P} = ____ft/sec \text{ (Vs.)}$$

$$Vs \times ____Flue \text{ Area} \times 60 = ____sefm$$

$$17.647 \times ____acfm \times \frac{Ps}{Ts \, ^cR} = ____sefm \times 60 = _____sefh$$

Project Number:	M 113908	Date		09-29-11
Client:	Manitowoc Public	Utilities Test	Number:	Post / Prez
Test Location:	Boiler 9 Outla	+ Duct Start	Time:	0953
Source Condition:	- HGHLO	48 End	Гime:	1003
Test Engineer:	A.L. SORC	€ Test	Tech:	ROD SOLLARS
Duct Diamete	r <u>9. 0</u> ft	Upstream Disturband	e, Diameters	
Flue Area 🟒	3,617 ft ²	Downstream Disturba		
Port Length	11,0 "	Pitot ID (82~ら Pito		0.840
P _{bar} 29.05"		Wet Bulb Te		Leak Checks
Static <u>+0.20</u>	"H₂O O₂ % <u>≤</u> .	多り Dry Bulb Ter		Pre <i>₹4/+4</i>
Static 🛨 🔍 🗸	[″Hg N₂% <u>80.</u>	80 Bws 0.08	3/	Post 73/43
Ps 29.06 "	Hg Meter No(-	

Port-Point #	ΔΡ	Temp. °F	√∆P	Null Point Angle, Degrees	Port-Point #	ΔΡ	Temp.	$\sqrt{\Delta P}$	Null Point Angle, Degrees
A-1	0.56	341			73-1	0,57	341		
2	0.60	341			2	0.56	341		
3	0,63	341			3	0,50	341		
ef	0,60	341			+ 4	0.48	341		
5	0.57	341			5	0.41	341		
6	0,55	341			6	0,50	341		
7	0.56	341			. 7	0.77	342		
8	0.63	341			8	0.88	342		
9	0.68	341			9	1,00	342		
10	0.84	341			10	1.10	342		
11	0.89	341			//	1.00	342_		
12	0,83	340			12	1,00	342		
						·			
			_						
Average									

$$.44 \times CO_{2}\% + .32 \times O_{2}\% + .28 \times N_{2}\% = _____(Md)$$

$$(_____Md \times ____1-Bws) + (18 \times ____Bws) = ____(Ms)$$

$$85.49 \times ___Cp \times \sqrt{ ___Ms \times __Ps} \times ___ \sqrt{\Delta P} = ____ft/sec (Vs)$$

$$Vs \times ____Flue Area \times 60 = ____acfm$$

$$17.647 \times ____acfm \times \frac{Ps}{Ts \circ R} = ____scfm \times 60 = ____scfh$$

Project Number:	m 11	3908.	Date:	09-29-11
Client:	Manitawoe	- Public Utilit	Test Number:	Post 2/PRE 3
Test Location:	Bailer !	Quitlet Duc	Start Time:	1145
Source Condition:		GH LOAD	End Time:	1156
Test Engineer:	A, L	Sorce	Test Tech:	ROD SOLLARS
Duct Diam	eter 9.0 ft	Upst	 ream Disturbance, Diameters	
Flue Area	43.617 ft2		nstream Disturbance, Diamet	
Port Lengt	th 11.0 "	- Pito	t ID/82-13 Pitot Coefficient	
Pbar 29.0	≦″Hg	CO2 % 13, 95	Wet Bulb Temp	Leak Checks
Static <u>≁⊘</u>	<u>~</u> ′H₂O	O2 % 5.25	Dry Bulb Temp	Pre +4/+4
Static <u>∔o. </u>		N ₂ % <u>80, 80</u>	Bws 0.78	Post 4/14
Ps 29.06	′₂″Hg	Meter No. CM-11		,

Port-Point #	ΔΡ	Temp. °F	$\sqrt{\Delta P}$	Null Point Angle, Degrees	Port-Point #	ΔΡ	Temp.	$\sqrt{\Delta P}$	Null Point Angle, Degrees
A-1	0.72	342			B-1	0.55	341		
2	0.45	34*			2-	0,63	341		
3	6,57	344			3	0.64	341		
4	0.50	344			4	0.60	341		
5	0.52	344			5	0,57	34/		
6	0.54	344			6/	0,56	341		
7	0,68	344			7	0,58	342		
8	0.81	344			8	0.61	343		
9	0.90	344			9	0.63	343		
10	0,98	344			10	0,68	343		
1/	1.20	344			11	6,71	343		
/ 2	1.10	343			12	0.74	343		
			/						
Average							-		

$$.44 \times CO_{2}\% + .32 \times O_{2}\% + .28 \times N_{2}\% = _____(Md)$$

$$(_____Md \times ____1-Bws) + (18 \times ____Bws) = ____(Ms)$$

$$85.49 \times ___Cp \times \sqrt{\frac{(_____)Ts \circ R}{Ms \times _Ps}} \times ___ \sqrt{\Delta P} = ____ft/sec (Vs)$$

$$____Vs \times ____Flue Area \times 60 = ____acfm$$

$$17.647 \times ____acfm \times \frac{Ps}{Ts \circ R} = _____scfm \times 60 = ____scfh$$

Project Number:	M 1139	08	Date:	09-29-11
Client:	Manitowac 1	ublic Utilit	Test Number:	Post 3
Test Location:	Boiler 9 C	Putlet Duct	Start Time:	/343
Source Condition:	High L	oad	End Time:	1354
Test Engineer:	A.L. SOR	Œ	Test Tech:	ROS SOLLARS
Duct Diamet	er no ft	Upstre	am Disturbance, Diame	ters
Flue Area <u>∠</u>	3.417 ft2	Downs	stream Disturbance, Diar	meters
Port Length	11.0 "	Pitot I	D <u>/82-/</u> BPitot Coefficie	ent (C _p) <u>0 . 8 4 0</u>
P _{bar} 29.05	"Hg CO ₂ '	14.2 11011	Wet Bulb Temp	Leak Checkş
Static <u>+0.20</u>	?"H₂O O₂ %	5.0	Dry Bulb Temp	Pre +4/+4
Static <u> + 0.0/</u>		80,8	Bws 0.019	Post fift for
Ps 29.06	"Hg Meter	No. <u>CM</u> -11	· · · · · ·	

Port-Point #	ΔР	Temp. °F	√∆P	Null Point Angle, Degrees	Port-Point #	ΔΡ	Temp. °F	√∆P	Null Point Angle, Degrees
A-1	0.55	342			13-1	0.46	344		
2	0.59	342			2	0.453	344		
3	0,66	342			3	0.52	344		
4	0.64	342			4	0.53	344		
5	0.60	342			5	0.55	344		
.6	0.61	342			6	0,63	344		
7	0.59	343			7	0.79	344		
8	0.58	343			8	0.89	344		
9	0.44	344			9	0.92	344		
10	0.79	344			10	0.76	344		
//	0.95	344			//	1100	344		
12	1.00	343			12	1.00	344		
							,		
			ΔV						
									·
Average			4.						

$$.44 \times CO_{2}\% + .32 \times O_{2}\% + .28 \times N_{2}\% = _____(Md)$$

$$(_____Md \times ____1-Bws) + (18 \times ____Bws) = ____(Ms)$$

$$85.49 \times ___Cp \times \sqrt{\frac{(_____)Ts \circ R}{Ms \times __Ps}} \times ___ \sqrt{\Delta P} = ____ft/sec (Vs)$$

$$Vs \times ____Flue Area \times 60 = ____acfm$$

$$17.647 \times ____acfm \times \frac{Ps}{Ts \circ R} = ____scfm \times 60 = ____scfh$$

<u>a jago kang ngilipina ang masa kao di</u>

DS-001 Method 2 Pitot Sheet

MOISTURE FIELD DATA SHEET

Sampling Lo	e/Number: _ <i>//</i> / cation:	Bailer	9 Ou	tlot De	164	Date: <i>09-29-11</i>
Source Cond	lition:	1-1.16	H LOAL	7		
Dry Gas Met	er No.	LM-11		Y =/	7.0/5 Test	Engineer: A.L. SURCE
Test (Run) No. Gas Temperat	ure 3 4	P °F Station	Pressure	bar). 29. +0.		14. o Orsat Analysis 5.2 %O2
Clock Time 24 hour	Meter Volume (V _m) (ft ³ or L (Circle One)	Meter Gage Pressure (ΔH) in. H₂O	Meter Temp. (t _m) °F	Impgr. Outlet Temp °F	Condensate	Silica Gel or Train
0840	6.690	0.03	66.03	62,5	= m	Is (V_f) 225. U_g grams (W_f)
0940	13.834			(- 200 m /0 ml × 0.04707 =	Is (V _i) - 221.9 grams (W _i) Is 3/3 grams
					ft³ [V _{wc(std)}] +	$ft^3 [V_{weg(std)}] = ft^3 [V_{wetd}]$
					V _{m(std)} = ft Water Vapor, proportion	by volume
					Leak Check:	B _{ws} =
					0.0 9.0	Moisture correction factor: 1 - B _{ws} =
Total Vol. Average	7.144			/ T \	Comments:	H = 1.579
Test (Run) No.	2-	Doromotel	c Pressure (P _b	(T _m)	∘R	•
Gas Temperatu	ıre <u>342</u>	°F Static	Pressure Pressure	70.0	in. Hg	/3.7 Orsat Analysis 5%O ₂
Clock Time 24 hour	Meter Volume (V _m)	Meter Gage	Meter Temp. (t _m)	Impgr. Outlet Temp		
	(ft ³ gr L (Circle One)	Pressure (∆H) in. H₂O	°F	°F	<u>Condensate</u>	Silica Gel or Train
1040	(Circle One) 4.308	(∆H) in.				· · · · · · · · · · · · · · · · · · ·
	(Circl é One)	(∆H) in. H₂O	°F	°F	208 mls - 200 mls	s (V _f)
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F	208 mls -200 mls -8 mls	s (V _f) $226 \cdot 6$ grams (W _f) s (V _l) $-224 \cdot 0$ grams (W _l) s $276 \cdot 6$ grams
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F	208 mls - 200 mls	s (V _t) 224 · $^{\prime}$ Gyrams (W _t) s (V _t) -224 · $^{\prime}$ gyrams (W _t) s 2 · $^{\prime}$ Gyrams × 0.04715 =
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F	208 mls -200 mls -8 mls	s (V _t) 224
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F	208 mls mls	s (V _t) 224
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F 62,5	208 mls	s (V _f) $ = \frac{224 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ s (V _f) $ = \frac{2 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ $ \times 0.04715 = \frac{1}{2} $ $ = \frac{1}{2} $
1040	(Circle One) 4.308	(∆H) in. H₂O	°F	°F 62,5	208 mls	s (V _f) $ = \frac{224 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ s (V _f) $ = \frac{2 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ $ \times 0.04715 = \frac{1}{2} $ $ = \frac{1}{2} $
1040 1140	(Circle One) 4.308	(∆H) in. H₂O	°F	°F 62,5	2 0 8 mls	s (V _f) $ = \frac{224 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ s (V _f) $ = \frac{2 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ $ \times 0.04715 = \frac{1}{2} $ $ = \frac{1}{2} $
1040	(Circle One) 4.308 /0.35/	(∆H) in. H₂O	°F	°F 62,5	208 mls	s (V _f) $ = \frac{224 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ s (V _f) $ = \frac{2 \cdot \log_{\text{prams}} (W_f)}{2 \cdot \log_{\text{prams}} (W_f)} $ $ \times 0.04715 = \frac{1}{2} $ $ = \frac{1}{2} $

$$V_{m(std)} = 17.64 \text{ V}_{m} \text{Y} \frac{P_{bar} + \frac{DH}{13.6}}{T_{m}}$$

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$

DS-003 Method 4 (Moisture Data Sheet)

MOISTURE FIELD DATA SHEET

Compliant	e/Number.	73 . \	- 6 A	1/2		Date: 09-29-11
Source Cond	cation:	100160	2 7 W.C	17128 131	1 C against	
Dry Gas Met	er No.	M-11	114 E CH14	Y = /	Test En	gineer: A.L. Sonce
.,						gor.
Test (Run) No. Gas Temperat	ure <u>34</u> 8	≶°F Statio	Pressure	ugha O	05 in. Hg 06 in. Hg	14.2 Orsat Analysis %CO ₂ S. O _{%O₂}
Clock Time	Meter Volume (√m)	Meter Gage	Meter Temp.	Impgr. Outlet		
	(ft³ or J/	Pressure	(t _m)	Temp	Condensate	
24 hour	(Circle One)	(ΔH)	°F	°F	Condensate	Silica Gel or Train
102	1 / 6 /	in. H₂O				
1225	1.33/	0.03	70,0	62.8	2.08	3 11 3
45.5					mls (V _t)
1325	7.399				mls (V _i) - 208,5 grams (W _i)
					mls	Z, _Sg rams
					× 0.04707 =	× 0.04715 =
					× 0.04707 =ft ³ [V _{wc(std)}] +	ft ³ [V _{wsg(std)}]
						$= \underline{\hspace{1cm}} ft^3 \left[V_{w(std)} \right]$
					$V_{m(std)} = \underline{\qquad} ft^3$	
					Water Vapor, proportion by	volume
					Leak Check:	B _{ws} = 0.79
					000011	· · · · · · · · · · · · · · · · · · ·
					10 8 8 Call	(/ Moisture correction factor:
					0.000000	1 - B _{ws} =
Total Vol.	6.068	1635333312			Leak Check: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Average		Scotland of the State of State		/T \	°R	
			l	(T_m)		
Test (Run) No.	18.828, 0000 FF (0.828,001)	Barometri	L c Pressure (Ph			Orsat Analysis
Test (Run) No. Gas Temperatu			 c Pressure (P _{bi} : Pressure _		in. Hg	Orsat Analysis ———————————————————————————————————
	ure	°F Statio	Pressure Meter	lmpgr.	in. Hg	
Gas Temperate Clock Time	ure Meter Volume (V _m)	°F Statio Meter Gage	Pressure Meter Temp.	Impgr. Outlet	in. Hg	%CQ2%O2
Gas Temperati	ure	°F Statio	Pressure Meter	lmpgr.	in. Hg	%CQ2%O2
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Statio Meter Gage Pressure	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg	%CQ2%O2
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg	%CQ2%O2
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg	%CQ2 %O2
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg Condensate	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (\mls (\))))))))))))))))))))))))))))))))))))	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vft^3 [V_{wc(std)}] + V_m(std) =ft^3	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vstd)] + V _{m(std)} =ft³ Water Vapor, proportion by	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vft^3 [V_{wc(std)}] + V_m(std) =ft^3	
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vstd)] + V _{m(std)} =ft³ Water Vapor, proportion by	Silica Gel or Train Silica Gel or Train (i)grams (W _i) grams (W _i) grams × 0.04715 = ft ³ [V _{wsg(std)}] = ft ³ [V _{w(std)}] volume B _{ws} =
Gas Temperate Clock Time	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vstd)] + V _{m(std)} =ft³ Water Vapor, proportion by	
Gas Temperate Clock Time 24 hour	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (\nls (\startage (\) mls (\) x 0.04707 =ft^3 [V_{wc(std)}] + Vm(std) =ft^3 Water Vapor, proportion by Leak Check:	Silica Gel or Train Silica Gel or Train (i)grams (W _i) grams (W _i) grams × 0.04715 = ft ³ [V _{wsg(std)}] = ft ³ [V _{w(std)}] volume B _{ws} =
Gas Temperate Clock Time 24 hour	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (vmls (vmls (vstd)] + V _{m(std)} =ft³ Water Vapor, proportion by	
Gas Temperate Clock Time 24 hour	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔH) in.	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp	in. Hg in. Hg in. Hg Condensate mls (\nls (\startage (\) mls (\) x 0.04707 =ft^3 [V_{wc(std)}] + Vm(std) =ft^3 Water Vapor, proportion by Leak Check:	
Gas Temperate Clock Time 24 hour	ure Meter Volume (V _m) ft ³ or L	°F Static Meter Gage Pressure (ΔΗ) in. H ₂ O	Pressure Meter Temp. (t _m)	Impgr. Outlet Temp °F	in. Hg in. Hg in. Hg Condensate mls (\mls (\ft^3 [V_{wc(std)}] + V_{m(std)} =ft^3 Water Vapor, proportion by Leak Check: Comments:	

 $V_{m(std)} = 17.64 \text{ V}_{m} \text{Y} \frac{P_{bar} + \frac{DH}{13.6}}{T_{m}}$ $B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$